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ABSTRACT 

Extractive reading comprehension is to extract consecutive subsequences from a given article to answer the given 
question. Previous work often adopted Byte Pair Encoding (BPE) that could cause semantically correlated words to be 
separated. Also, previous features extraction strategy cannot effectively capture the global semantic information. In this 
paper, an extractive summarization model is proposed with enhanced spatial-temporal information and span mask 
encoding (ESSM) to promote global semantic information. ESSM utilizes Embedding Layer to reduce semantic 
segmentation of correlated words, and adopts TemporalConvNet Layer to relief the loss of feature information. The 
model can also deal with unanswerable questions. To verify the effectiveness of the model, experiments on datasets 
SQuAD1.1 and SQuAD2.0 are conducted. Our model achieved an EM of 86.31% and a F1 score of 92.49% on 
SQuAD1.1 and the numbers are 80.54% and 83.27% for SQuAD2.0. It was proved that the model is effective for 
extractive QA task. 

Key words: extractive reading comprehension; spatial-temporal information; span mask 
 

1. INTRODUCTION 
Machine reading comprehension1 is a valuable study in the field of natural language processing (NLP). Extractive 
reading comprehension2 is to extract consecutive subsequences from the given article to answer question. Existing 
machine reading comprehension has some problems in solving practical problems. First, previous work adopted Byte 
Pair Encoding3 (BPE)[2], which randomly selected token as mask unit that could cause semantically highly correlated 
words to be separated. Then, during feature extraction4 the global semantic information cannot be effectively captured 
that leads to many semantically informational loss. Also, most of the existing models do not consider how to deal with 
the unanswered question, therefore the practicality of the question and answer (QA) task has been substantially reduced. 

In this paper, we propose an extractive summarization model with enhanced spatial-temporal information and span mask 
encoding (ESSM). Firstly, in the Embedding Layer, the model adopts a mask method that based on span of geometric 
distribution5 to maintain semantically correlated sequences. Secondly, in the TemporalConvNet Layer6, the model 
enhances spatial-temporal information. During the feature extraction, the global semantic information from high-level 
features7 is captured, which can reduce the loss of extractive feature information. More, we comprehensively consider 
how to deal with answerable and unanswerable questions. And we conduct experiments on datasets SQuAD1.1 and 
SQuAD2.0, which achieve an EM of 86.31% and a F1 score of 92.49% on SQuAD1.1 and the numbers are 80.54% and 
83.27% for SQuAD2.0. Experimental results demonstrate that the model is effective for extractive QA tasks and greatly 
improves its performance. 

2. RELATED WORK 
With the popularity of deep learning, more and more researchers adopt neural networks to build models8, such as 
BiDAF9, Match LSTM10, QANet11 etc. In terms of mask methods12, Google team proposed the Bert13 model in 2018. It 
adopts Byte Pair Encoding (BPE) and randomly selects token as the mask unit. However, it could cause semantically 
highly correlated words to be separated. In 2019, Cui Y14 et al. designed Whole Word Masking (WWM) utilizing 
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word-based mask, to deal with the full-words. But this mask method is more suitable for combination of units in Chinese 
rather than independent units in English. Sunday Y15 et al. developed ERNIE, which masked the complete named entities. 
However, before model training, it needs to label these words or phrases. 

In terms of datasets, Rajpurkar16 et al. constructed the extractive MRC dataset SQuAD1.1 utilizing the crowdsourcing 
service model (in order to distinguish the SQuADRUn dataset proposed by the author in 2018, the former is called 
SQuAD1.1, The latter is called SQuAD2.017). The two datasets are widely applied in natural language research related to 
question answering. In this paper, we also conduct experiments with these two datasets to verify the effectiveness. 

3. MODEL 
To maintain semantically correlated sequences, we propose a mask method that based on span of geometric distribution. 
At each iteration, a span will be sampled from a geometric distribution, then the starting position of this segment will be 
selected. This mask method could avoid semantically highly correlated words to be separated. To relief information loss, 
we enhances spatial-temporal information by capturing the global semantic information from high-level features. And we 
consider both answerable and unanswerable questions to increase practicality. 

 
Figure 1. ESSM model structure 

We develop an extractive summarization model with enhanced spatial-temporal information and span mask encoding 
(ESSM) to reduce semantic segmentation of correlated words and relief the loss of feature information. Our model 
consists of five layers, the model structure is shown in Figure 1. The data preprocessing gets the text information from 
datasets, and add the "is_impossible" parameter to determine whether the question can be answered. The default value is 
false that mean the question can be answered. When the value is true, it means the questions are unanswerable. The 
Embedding Layer implements random adjacency word segmentation span mask. The temporalConvNet Layer achieves 
high-level feature extraction. The Encoder Layer is composed of several identical encoder modules, and each encoder is 
a transformer encoder structure. It utilizes numerous multi-head attention mechanisms to connect each other. The Output 
Layer is adopted to predict the start position and end position. 

3.1 Embedding Layer 

Input the Paragraph and the Question to the model, then map it to a high-dimensional feature vector, its output dimension 
is [batch, seq_len, d_model]. The model structure is shown in Figure 2. 
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Figure 2. Embedding structure 

Previous work masked 15% input tokens, but this method randomly selects tokens as its mask unit, resulting in 
semantically highly correlated words to be separated. This paper innovates on this basis, adopting a mask method based 
on span rather than token. In each iterative, it selects spans until reaching the budget 15%. First sample a span length   
from geometric distribution. Then select a starting point with uniform distribution as the first mask span. 
3.2 TemporalConvNet Layer 

After the Embedding Layer, in order to obtain the global information of the sequence, we captured the global semantic 
information from high-level features. It is helpful to improve the answer accuracy. The value at time t only depends on 
the value of the next layer and before layer. But the length of model is limited by the size of the convolution kernel. To 
capture longer dependencies, lots of linear layers must be stacked to obtain larger receptive field. However, after the 
pooling layer, it may cause information loss. In order to solve this problem, our model adopts 1D Convolutional Network.  
Finally, we introduce residual block, which is applied to replace one Convolutional layer. Each residual block contains 
two dilated convolution and two nonlinear mappings. At the same time, in each layer it adds WeightNorm and Dropout18 
for regularization.  

3.3 Output Layer and Loss Calculation 

The Output Layer is utilized to predict the start position and end position of the answer, and we adopt the maximum 
scores as output prediction. As for unanswerable questions we set the range of answer from start to [CLS]. 

The loss function adopts entropy loss, which consists of two parts. One part is the loss of the model mask. Other part is 
the loss of average answer prediction. The calculation method is shown in formula (1). ℓ ൌ ℓ୑୐୑ ൅ ℓ୮୰ୣୢ (1) 

4. EXPERIMENT 
4.1 DataSet 

This paper adopts extractive reading comprehension public dataset SQuAD, consisting of questions propose by 
crowdworkers on Wikipedia articles, and the answers of those questions are continuous text from each article. ESSM 
comprehensively considers how to deal with answerable and unanswerable questions. By testing these questions, the 
model enhances the practicality of extractive QA task. An example of SQuAD2.0 is shown in Figure 3.  
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Figure 3. An example of SQuAD2.0 

4.2 results and analysis 

In order to evaluate the performance of the ESSM, we conduct comparative experiments. Our model and other similar 
models such as QANet, Bert, TCN+Attention are tested on the dataset SQuAD1.1. The comparison results of above 
different models in dataset SQuAD1.1 experiment are shown in Table1. Through the experimental comparison results, it 
can be seen that ESSM has significantly improves the accuracy. Especially compared with bert, the EM value is 
improved by 5.07%, and the F1 value is improved by 0.42%. 

Table1.SQuAD1.1 Model performance comparison 

Model EM F1 
QANet 69.2 78.76 

TCN+Attention 70.71 79.94 
Bert 81.24 92.07 

AE-ESFS 86.31 92.49 
On the dataset SQuAD2.0 with unanswerable questions, we conduct a comparative experiment with the Bert model, the 
result is shown in Table2. According to the result, it proved that ESSM increases the value both on EM and F1 obviously. 
Compared with Bert, the EM value is improved by 2.73%, and the F1 value is improved by 7.13%. 

Table2.SQuAD2.0 Model performance 

Model EM F1 
Bert 72.99 76.14 

AE-ESFS 80.54 83.27 
Through the above experimental comparison results, we give an example on dataset SQuAD2.0 that is wrong prediction 
on Bert, but correct on ESSM shown in Figure 4. 

 
Figure 4. An example of comparison between Bert and ESSM 
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5. CONCLUSION 
We proposed an extractive summarization model with enhanced spatial-temporal information and span mask encoding 
(ESSM) to promote global semantic information. Firstly, in the Embedding Layer, the model adopts a mask method that 
based on span of geometric distribution to maintain semantically correlated sequences. Secondly, in the 
TemporalConvNet Layer, the model capture the global semantic information from high-level features to reduce the loss 
of feature information extraction. Our model can also deal with unanswerable questions. On datasets SQuAD1.1 and 
SQuAD2.0, our model achieved substantial improvements compared with Bert. 
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