
Texas A&M University-San Antonio Texas A&M University-San Antonio

Digital Commons @ Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio

Computer Science Faculty Publications College of Business

2014

Test Cases Selection Based on Source Code Features Extraction Test Cases Selection Based on Source Code Features Extraction

I. Alazzam

Izzat M. Alsmadi
Texas A&M University-San Antonio, ialsmadi@tamusa.edu

M. Akour

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Alazzam, I.; Alsmadi, Izzat M.; and Akour, M., "Test Cases Selection Based on Source Code Features
Extraction" (2014). Computer Science Faculty Publications. 22.
https://digitalcommons.tamusa.edu/computer_faculty/22

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please
contact deirdre.mcdonald@tamusa.edu.

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/22?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014), pp.203-214

http://dx.doi.org/10.14257/ijseia.2014.8.1.18

ISSN: 1738-9984 IJSEIA

Copyright ⓒ 2014 SERSC

Test Cases Selection Based on Source Code Features Extraction

Iyad Alazzam
1
, Izzat Alsmadi

2
and Mohammed Akour

3

1
Yarmouk University

2
Prince Sultan University

3
Yarmouk University

1
eyadh@yu.edu.jo,

2
ialsmadi@cis.psu.edu.sa,

3
mohammed.akour@yu.edu.jo

Abstract

Extracting valuable information from source code automatically was the subject of many

research papers. Such information can be used for document traceability, concept or feature

extraction, etc. In this paper, we used an Information Retrieval (IR) technique: Latent

Semantic Indexing (LSI) for the automatic extraction of source code concepts for the purpose

of test cases’ reduction. We used and updated the open source FLAT Eclipse add on to try

several code stemming approaches. The goal is to check the best approach to extract code

concepts that can improve the process of test cases’ selection or reduction.

1. Introduction

In many cases, it is necessary to evaluate automatically software source codes with the

goal of finding some relevant information for a particular task. For example, traceability

between source code and related documents such as: requirements, manual, help, designs,

etc., is required to check that those documents reflect the source code or vice versa. Such

process can be very complex and time consuming to conduct manually.

Concept or feature extraction is also widely used in information retrieval (IR) and natural

language processing (NLP) fields. Search engines for example, response to user queries and

try to retrieve information that is most relevant to the searched for queries. In NLP, concept

extraction is used for example to categorize or classify documents, books, articles, etc. based

on general pre-defined lists.

The main research aspect in the subject of features or concepts extraction from software

source code is related to: What to extract or based on what to extract. This can be subjective

and user defined based on the type and the nature of the source code. This can be also

generalized based on some generic aspects that can be applied to all software applications

given a particular context.

Source code feature or concept extraction approaches use or develop tools to evaluate

coupling or cohesion aspects between the different elements of the software. Coupling refers

to the external connections. For example, for a particular method in a program, it can be

coupled with all methods that it calls or all methods that use or call it. Further, it can be

coupled with external variables that are used in the method or any other type of software

components.

Cohesion refers to the internal relatedness or connection between the components where

for example several methods in a particular class are expected to be related to each other.

Such semantic relatedness is translated practically through their call or use of each other.

Cohesion and coupling metrics are used as code and design quality evaluators where a

good software is expected to have low coupling and high cohesion. Software metrics and

metric tools are used to gather metrics related to coupling and cohesion where several metrics

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

204 Copyright ⓒ 2014 SERSC

are proposed in this area (e.g., Briand et al., [20]). However, in the scope of this paper,

coupling and cohesion metrics are used feature extraction and similarity evaluation.

Similar to search in search engines, feature or concept extraction from source code can

start from concepts or keywords defined by users as an input. Feature extraction tools are then

used to map code elements that reflect or response to such input concepts or keywords.

The rest of the paper is organized as the following: Section two presents a literature review

for papers relevant to the subject of this paper. Section three presents methodology and

approaches, section four presents experiments and analysis and the paper is concluded with

conclusion section.

2. Literature Review

The subject of this paper is related to several categories. First, the paper discusses the use

of the Information Retrieval (IR) technique: Latent Semantic Indexing (LSI). Test cases

reduction is used in this paper to direct the source code feature or concept extraction method.

Perhaps the combination of those three techniques is new and hence we will present papers to

the combination of those research concepts or areas.

To the best of our knowledge, the approach presented in this paper is the first attempt that

utilizing IR-LSI for developing test case reduction approach based on feature extraction.

Identifying the parts of the source code that correspond to a specific functionality is known

as feature or concept location [1]. This activity is commonly considered in software

maintenance and evolution.

Chen and Rajlich [2] developed a semi-automated approach for locating features based on

the search of program dependence graph. Other work that tackled the issue of concept or

feature location include [3, 4], where they utilized reverse engineering approaches and

visualization.

2.1. IR-LSI Technique for Code Features Extraction

Liu et al., [5] presented a semi-automated hybrid feature location technique SIngle Trace

and Information Retrieval (SITIR). They assumed that a single execution trace of a scenario,

exercising a feature of interest, includes all the essential information to find the most

important parts of the source code that are implementing this feature. The source code is

indexed using Latent Semantic Indexing, they asked the users to write queries relevant to the

desired feature and rank all the executed methods based on their textual similarity to the

query. To address the accuracy of their approach two open source software (JEdit and

Eclipse) were used. The result showed that the new technique has high accuracy in

comparison with, comparable with previously published approaches.

Marcus et al., [6] Demonstrated a new approach for finding the location of desired concept

in the source code by utilizing Latent Semantic Indexing (LSI). In their previous work, they

used LSI to recover traceability links between external documentation and source code [7].

As the important difference is that in this application LSI is used to map domain concepts

formulated as user queries to software components (i.e., query to source). They evaluated the

two ways of the feature location using LSI (i.e., based on user formulated queries and based

on partially automated generated queries).

Moreover, they compared the results of using their approach based on LSI other known

methods of concept location which are based on static code analysis: a search of the program

dependency graph and the traditional grep based method. As a case study they tried to locate

concepts in version 2.7 of the NCSA Mosaic web browser.

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 205

2.2. Test cases’ Reduction Techniques

John Regehr et al., [8] started with an existing algorithms called delta debugging in order

to reduce test cases in C programs that trigger compiler bugs. They designed and

implemented three new domain specific test case reducers (i.e., Seq-Reduce, Fast-Reduce,

and C-Reduce). They compared their reducers against each other and against Berkeley delta

by using 98 random generated C programs that trigger bugs in production compilers. The

experiments showed how their reducer achieves the goal of producing reportable and valid

test cases automatically delta debugging reducers were unsuccessful in generating sufficient

small test cases.

Mahapatra and Singh [9] presented a new technique for improving the efficiency of

software testing by reducing the number of test cases. They summarized their approach in 4

mains steps and assumed that their reduction steps will lead to less time to test run, and

generate test cases automatically. They evaluate their technique by comparing it with Get

Split algorithm technique. The result revealed that the proposed technique achieved greater

reduction percentage of the test cases and kept test cases generation to a single run.

Dan Hao et al., [10] Proposed on-demand test suite reduction approach that aimed to

satisfy the same test requirements as an initial test suite. In order to decrease the losses in

fault-detection capability after subset selection, they allow the engineer to specify upper

limits on loss in fault-detection capability and confidence level. They applied their approach

into eight C programs and one Java program in three scenarios. Their study showed that the

proposed approach can be effective when it is applied to program versions and sets of similar

programs. There was not any comparison with an existing test suite reduction approaches.

Heimdahl and Devaraj [11] addressed fault detection capability of test suite reduction for

formal models of software systems. They generated reduced test-suites for a large case

example of a Flight Guidance System (FGS) that seeded with faults. Their algorithm

generates reduced test suites for a variety of structural coverage criteria while preserving

coverage faults. Although their study results emphasize that test-suite reduction of test-suites

providing structural coverage may not be effective in term of fault, still they need additional

experiment to generalize their results and hypothesis.

Several techniques for test suite reduction include the heuristic algorithms, 0-1 integral

programming are located in the literature [12-14]. These techniques reduce test suites by

analyzing the harmony between testing requirements and test cases.

Chen et al., [15] assumed that optimizing testing requirements might lead to solve the

problem of test suite reduction. To achieve test suite reduction, a graph requirement relation

contraction method is proposed. They conclude that the result of testing requirement

optimization is no better than, but close to the result of test case reduction.

Raamesh and Uma [16] developed an algorithm that reduces test cases and produced

manageable size of test suit. She addressed the potential shortcoming of existing test suites

reduction approaches as they might cause high decrease in fault detection effectiveness of the

reduced suite. The proposed algorithm clusters test cases based on the similarity of their

execution profiles and produces some representatives to form the reduced test suite.

Test prioritizing play an important role in test suite reduction, Pravin and Srinivasan [17]

presented an approach that assign priority for each test case. The priority is given depends

upon the code coverage, higher priority test case value are selected to be in the reduced test

suites. To demonstrate the effectiveness of their algorithm, the approach applied on two

applications.

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

206 Copyright ⓒ 2014 SERSC

3. Methodology

In order to evaluate using IR approaches in source codes concepts extraction, we selected

the open source code: http://marc4j.tigris.org/. The qualifications for such selection include:

First as this is an open source Java source code and second is that it includes test cases created

and provided as well by the same team, company or developers. Feature extraction are then

going to be conducted based on the test cases to check the code or the part of the code that

responds to the test cases and then prioritize test cases based on that. For example, test cases

that have no significant code to respond to will be eliminated. MARC4j is an Application

Programming Interface (API) for working with MARC (Machine Readable Cataloging) and

MARCXML

Open source FLAT3 Eclipse add-on will be customized and used. FLAT3

(http://www.cs.wm.edu/semeru/flat3/) [18] uses textual static and dynamic techniques for

source code features’ location techniques based on users’ input queries or keywords. Textual

extraction is used with the assistant of Lucene library: (http://lucene.apache.org/java/docs).

Dynamic feature extraction is used with the assistant of MUTT library:

(http://sourceforge.net/projects/muttracer).It also includes feature annotation capabilities and

uses such annotations for calculating coupling features. The tool itself uses and extends

earlier tools such as ConcernMapper [19]. LSI is conducted part of the tool for evaluating

textual similarities. Figure 1 shows the overall architecture of FLAT3 [18].

Figure 1. FLAT3 Overall Architecture [18, 22]

As the tool is open source, we modified stemming algorithms and details to evaluate the

value of textual similarities based on different selections. For example, we evaluate the effect

of keeping or eliminating programming reserved keywords (e.g., public, private, int, etc.,) on

the effectiveness of the stemming and textual similarity processes. Original implementation of

stemming in FLAT3 includes stemming all keywords. It also include splitting compound

names (e.g., calculateAverage into calculate and average).

4. Case study: Experiment and Analysis

We have conducted extensive experiments using Eclipse plugin called FLAT3. This plugin

is an open source, and we have made changes on it. As mentioned in the mythology we

selected the open source code: http://marc4j.tigris.org/ as the testing case study. This is

largely as the open source includes test cases written and published. We will evaluate

http://marc4j.tigris.org/
http://www.loc.gov/marc/
http://www.loc.gov/standards/marcxml/
http://www.cs.wm.edu/semeru/flat3/
http://marc4j.tigris.org/

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 207

similarity between test cases and source code. We ran four different experiments. In the first

one we use the plug-in as is, the second one we changed the stemming and pre processing

techniques into excluding stop words and keeping the splitting identifiers, the third one

including updated stop words and splitting identifiers and the fourth one including the

updated stop words and excluding the splitting identifiers.

A similarity index value ranges between 0 and 1. One means identical match between the

query and the retrieved text. Percentage below this then reflects the level of similarity

between both elements.

The following tables show the weights (similarity) of each test class name towards the

application or system under test.

Table 1. Weights of Tested Classes using FLAT3 using Default Tool Settings

Test Class Name Weight

DataFieldTest 3.611

ControlFieldTest 0.354

RecordTest 11.34

LeaderTest 3.898

ReaderTest 11.461

WriterTest 31.461

RoundtripTest 12.544

Total 74.669

Table 1 shows the weight of each test class towards the system under test using the

FLAT3. The results show that the WriterTest class has the highest weight of 74.67. The

RecordTest and ReaderTest classes have almost the same weight 11.34, 11.461 accordingly.

The results also show that the ControlFieldTest has the lowest weight. Those weights are

evaluated based on the test cases. For example, a class with the highest weight in this table

means that it is getting the highest percentage of test cases in comparison with other classes.

Table 2 shows the weight of each test class towards the system under testing after modifying

the stemming and pre processing.

Table 2. Weights of Tested Classes Excluding Stop Words and Including the
Splitting Identifiers

Test Class Name Weight

DataFieldTest 3.862

ControlFieldTest 0.354

RecordTest 12.36

LeaderTest 4.024

ReaderTest 11.0544

WriterTest 29.583

RoundtripTest 13.26

Total 74.4974

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

208 Copyright ⓒ 2014 SERSC

Here the stops words are removed and the splitting identifiers are kept. The results show

that the weights are just a bit less than the weights in Table 1. Table 3 shows the weight of

each test class towards the system under testing after modifying the stemming and pre

processing.

Table 3. Class Weights with Updating Stop Words and including the Splitting
Identifiers

Test Class Name Weight

DataFieldTest 3.611

ControlFieldTest 0.354

RecordTest 11.833

LeaderTest 3.898

ReaderTest 10.222

WriterTest 32.095

RoundtripTest 10.53

Total 72.543

In this third case, the stops words are updated by adding new stop words and the splitting

identifiers are kept. The results show that the weight of RecordTest class is greater than the

weight of the RoundtripTest class where in the previous results the weight of the

RoundtripTest class is always greater than the weight of RecordTest class. Table 4 shows the

weight of each test class towards the system under testing after modifying the stemming and

pre processing activities.

Table 4. Class Weights with Modifying Stop Words List and Excluding the
Splitting Identifiers

Test Class Name Weight

DataFieldTest 4.485

ControlFieldTest 0.283

RecordTest 3.163

LeaderTest 1.672

ReaderTest 8.349

WriterTest 29.082

RoundtripTest 6.444

Total 53.478

In the fourth case, the stops words are updated by adding new stop words and the splitting

identifiers are excluded. The results show that there is a significant change according the

previous results. The weights are decreased clearly. This leads to the conclusion that the

splitting identifiers process has a high impact on the results. Table 5 shows the weight of each

test case towards the system under test using the FLAT3.

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 209

Table 5. Test Cases’ Weight

Test Case Name Weight Test Case Name Weight

testConstructor 1.655 testMarcStreamReader 3.462

testSetData 0.354 testMarcStreamWriter 11.593

testComparable 0.7 testMarcXmlReader 7.999

testGetFields 0.533 testWriteRead 6.428

testFind 9.593 testWriteReadUtf8 6.116

testAddSubfield 0.599 testMarcXmlWriter 10.356

testMarshal 1.424 testWriteAndRead 9.512

testUnmarshal 2.474 testSetSubfield 0.657

testCreateRecord 1.214

sum 74.669

The results show that the test case testMarcStreamWriter has the highest weight which

means that this test case is related more to the system under test. The second highest weight is

for the testMarcXmlWriter test case. Whereas the testSetData test case has the lowest weight

which is 0.354.

Table 6. Excluding Stop Words and Including the Splitting Identifiers

Test Case Name Weight Test Case Name Weight

testConstructor 1.724 testMarcStreamReader 2.7104

testSetData 0.354 testMarcStreamWriter 11.038

testComparable 0.7 testMarcXmlReader 8.344

testGetFields 0.627 testWriteRead 6.63

testFind 9.85 testWriteReadUtf8 6.63

testAddSubfield 0.678 testMarcXmlWriter 9.343

testMarshal 2.53 testWriteAndRead 9.202

testUnmarshal 1.494 testSetSubfield 0.76

testCreateRecord 1.883

sum 74.4974

Table 6 shows the weight of each test case towards the system under testing after

modifying the stemming and pre processing. Here the stops words are removed and the

splitting identifiers are kept. The results show that the weights are just a bit less than the

weights in Table 5.

Table 7. Updated Stop Words and Including the Splitting Identifiers

Test Case Name Weight Test Case Name Weight

testConstructor 1.655 testMarcStreamReader 2.533

testSetData 0.354 testMarcStreamWriter 11.283

testComparable 0.7 testMarcXmlReader 7.689

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

210 Copyright ⓒ 2014 SERSC

testGetFields 0.533 testWriteRead 5.265

testFind 9.593 testWriteReadUtf8 5.265

testAddSubfield 0.599 testMarcXmlWriter 9.427

testMarshal 2.424 testWriteAndRead 11.385

testUnmarshal 1.474 testSetSubfield 0.657

testCreateRecord 1.707

sum 72.543

Table 7 shows the weight of each test case towards the system under testing after

modifying the stemming and pre processing. Here the stops words are updated by adding new

stop words and the splitting identifiers are kept. The results show that the weight of

testWriteAndRead test case is greater than the weight of the testMarcStreamWriter test case

in just a bit.

Table 8. Updated Stop Words and Excluding the Splitting Identifiers

Test Case Name Weight Test Case Name Weight

testConstructor 1.926 testMarcStreamReader 1.349

testSetData 0.283 testMarcStreamWriter 11.112

testComparable 0.65 testMarcXmlReader 7

testGetFields 0.391 testWriteRead 3.222

testFind 1.054 testWriteReadUtf8 3.222

testAddSubfield 0.849 testMarcXmlWriter 8.461

testMarshal 1.006 testWriteAndRead 9.509

testUnmarshal 0.666 testSetSubfield 1.06

testCreateRecord 1.718

Total 53.478

Table 8 shows the weight of each test case towards the system under testing after

modifying the stemming and pre processing. Here the stops words are updated by adding new

stop words and the splitting identifiers are excluded. The results show that there is an obvious

change according the previous results. The weights are decreased clearly. This leads that the

splitting identifiers has high impact on the results.

5. A comparison Study
We will compare experiment in our paper with two case studies:case1. Revelle et

al., [23] which describes the usage of FLAT3 tool. Case 2.Liu et al., [24] which

shows how to locate feature by using information retrieval based on filtering of a

single scenario execution trace

5.1. Case 1:

The authors of this paper propose and define feature coupling metrics derived from two

different sources of information: 1.Structural Feature Coupling (SFC) which gets and obtains

the association among two features according to the structure information. 2. Textual Feature

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 211

Coupling (TFC) captures the relationships among two features according to the textual

information in source code by using Latent Semantic Indexing technique (LSI).

5.1.1 Case Study and Methodology

They have done three case studies; the first case study investigates the association among

fault proneness and feature coupling by computing the relationship among bugs and the

metric values for every single pairs of features in dvViz nad Rhino applications. The second

case study explores the impact analysis in the feature coupling metrics to determine if other

features are affected by another feature which is currently modified. The third case study is a

survey where done among 31 programmers to evaluate the power of coupling among 16

chosen pairs randomly of features from dbViz, Rhino, and iBatis applications. dbViz7 is an

open source code for database visualization written in Java, it includes ninety three classes

implemented in five hundred and fifty four methods with twelve thousands and seven

hundreds lines of code. Rhino includes one hundred and thirty eight classes implemented in

one thousand and eight hundreds methods with thirty two thousands line of code in java

script. iBatis is an object-relational mapping tool consists of two hundreds and twelve classes

implemented in more than one thousand and eight hundreds methods with thirteen thousands

and three hundreds of lines of code.

5.1.2. Results

The results of all three studies show that the feature coupling metrics are certainly practical

and useful in evaluating the impact of change, directing and guiding the testing process,

locating and finding bugs.

5.2. Case 2:

The authors of this paper propose a hybrid approach for feature location called SIngle

Trace and Information Retrieval (SITIR). The approach is based on execution just a single

scenario that employs a specific feature and then traces that execution, then using the Latent

Semantic Indexing (LSI) technique to do textual analysis on the traces in order to obtain the

related source code regarding to the executed scenario.

5.2.1. Case Study and Methodology

They have done two cases studies to assess the performance of their approach (SITIR). The

first case study includes the locating three features (“Search, Add marker and Show

whitespace”) in JEdit application related with change requests using two techniques LSI and

SITR. JEdit is an open source code for text editor; it includes five hundreds classes

implemented in five thousand methods and eighty eight thousands lines of code written in

Java. The second case study includes locating three features (“Select, Add files and Search”)

in Eclipse related to the bugs using three techniques LSI, PROMESIR, SITIR and SPR.

Eclipse is an open source code for integrated development environment; it includes seven

thousands classes implemented in eighty nine thousands methods and more than eight

thousand source code file and more than two millions and four hundred thousand line of code

written mainly in Java with a bit of C and C++.

5.2.2. Results

In the first case study the results indicate that the SITIR is notably less sensitive to the

weak user quires than LSI merely. In the second case the results show that SITIR exceeds

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

212 Copyright ⓒ 2014 SERSC

SPR and LSI in finding bugs associated features in Eclipse, also the results show that SITIR

and PROMESIR are similar in locating bugs.

6. Conclusion

In this paper, we propose a new technique for test case selection and reduction based on

feature or concept testing by using information retrieval, latent semantic indexing. Our

approach uses LSI to find the semantic similarity among source code and test cases in order to

find the test case that has the highest weight. A case study of finding the semantic analysis

among test cases and source code in MARC4j is analyzed and presented. We have tried and

compared the results of four different steaming approaches; the first one we use the FLAT3

plug-in as is, the second one we changed the stemming and pre processing techniques into

excluding stop words and keeping the splitting identifiers, the third one including updated

stop words and splitting identifiers and the fourth one including the updated stop words and

excluding the splitting identifiers. The results show that splitting identifiers has high impact

on the semantic similarity.

References

[1] N. Wilde and M. Scully, “Software Reconnaissance: Mapping Program Features to Code”, Software

Maintenance: Research and Practice, vol. 7, (1995), pp. 49-62.

[2] K. Chen and V. Rajlich, “Case Study of Feature Location Using Dependency Graph”, Proceedings of Intern.

Workshop on Program Comprehension (IWPC'00), (2000), pp. 241-249.

[3] R. Fiutem, P. Tonella, G. Antoniol and E. Merlo, “A Cliche'-Based Environment to Support Architectural

Reverse Engineering”, Proceedings of Intern Conference on Software Maintenance (ICSM '96), (1996)

November 04-08, pp. 319-328.

[4] K. Lukoit, N. Wilde, S. Stowell and T. Hennessey, “TraceGraph: Immediate Visual Location of Software

Features”, Proceedings of International Conference on Software Maintenance (ICSM'00), San Jose, (2000)

October 11-14, pp. 33-39.

[5] D. Liu, A. Marcus, D. Poshyvanyk and V. Rajlich, “Feature Location via Information Retrieval based

Filtering of a Single Scenario Execution Trace”, Proceedings of 22nd IEEE/ACM International Conference

on Automated Software Engineering ASE, Atlanta, Georgia, (2007).

[6] A. Marcus, A. Sergeyev, V. Rajlich and J. I. Maletic, “An Information Retrieval Approach to Concept

Location in Source Code”, Proceedings of the 11th Working Conference on Reverse Engineering, WCRE,

isbn0-7695-2243-2, IEEE Computer SocietyWashington, DC, USA, (2004), pp. 214-223.

[7] A. Marcus and J. I. Maletic, “Recovering Documentationto- Source-Code Traceability Links using Latent

Semantic Indexing”, Proc Intern Conference on Software Engineering (ICSE'03), Portland, OR, (2003) May

3-10, pp. 125-137.

[8] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison and X. Yang, “Test-Case Reduction for C Compiler Bugs”,

Proceedings of 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation

PLDI, Beijing, China, PLDI, ACM isbn978-1-4503-1205-9, (2012) June.

[9] R. P. Mahapatra and J. Singh, “Improving the Effectiveness of Software Testing through Test Case

Reduction”, (2008).

[10] D. Hao, L. Zhang, X. Wu, H. Mei and G. Rothermel, “On-Demand Test Suite Reduction”, Proceedings of the

International Conference on Software Engineering, (2012) June, pp. 738-748.

[11] M. P. E. Heimdahl and D. George, “Test Suite Reduction for Model Based Tests: Effects on Test Quality and

Implications for testing”, Proc. 19th Intl. Conf. on Automated Software Engineering, (2004), pp. 176-185.

[12] C. and L., “A new heuristic for test suite reduction”, Information and Software Technology, vol. 40, no. 5,

(1998), pp. 347-354.

[13] H., G. and S., “A methodology for controlling the size of a test suite”, ACM Trans. on Soft. Eng. and Meth,

vol. 2, no. 3, (1993), pp. 270-285.

[14] L. and C., “An optimal representative set selection method”, Information and Software Technology, vol. 42,

no. 1, (2000), pp. 17 25.

[15] Z. Chen, B. Xu, X. Zhang and C. Nie, “A novel approach for test suite reduction based on requirement

relation contraction”, Proceedings of the 2008 ACM symposium on Applied computing, isbn978-1-59593-

753-7,Fortaleza, Ceara, Brazil}, ACM, (2008), pp. 390-394.

http://www.cs.utah.edu/~regehr/papers/pldi12-preprint.pdf

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

Copyright ⓒ 2014 SERSC 213

[16] R. and U., “An Efficient Reduction Method for Test Cases”, International Journal of Engineering Science

and Technology, vol. 2, no. 11, (2010), pp. 6611-6616.

[17] P. and S., “An Efficient Algorithm for Reducing the Test Cases which is Used for Performing Regression

Testing”, 2nd International Conference on Computational Techniques and Artificial Intelligence

(ICCTAI'2013), Dubai (UAE), (2013) March 17-18.

[18] M. Revelle, “Supporting Feature-Level Software Maintenance”, WCRE, (2009), pp. 287-290.

[19] M. P. Robillard and F. Weigand-Warr, “Concernmapper: Simple view-based separation of scattered

concerns”, Proceedings of the Eclipse Technology Exchange at OOPSLA (ETX’05), (2005), pp. 65-69.

[20] L. C. Briand, J. Daly and J. Wust, “A unified framework for coupling measurement in object oriented

systems”, IEEE Transactions on Software Engineering, vol. 25, no. 1, (1999), pp. 91-121.

[21] A. Ohno and H. Murao, “Measuring Source Code Similarity Using Reference Vectors”, ICICIC, vol. 2,

(2006), pp. 92-95.

[22] T. Savage, M. Revelle and D. Poshyvanyk, “FLAT3: feature location and textual tracing tool”, ICSE, vol. 2,

(2010), pp. 255-258.

[23] M. Revelle, M. Gethers and D. Poshyvanyk, “Using structural and textual information to capture feature

coupling in object-oriented software”, Empirical Software Engineering, vol. 16, no. 6, pp. 773-811, (2011).

[24] D. Liu, A. Marcus, D. Poshyvanyk and V. Rajlich, “Feature Location via Information Retrieval based

Filtering of a Single Scenario Execution Trace”, Proceedings of the twenty-second IEEE/ACM international

conference on Automated software engineering, (2007), pp. 234-243.

Authors

Iyad M Alazzam, is an assistant professor in the department of

computer information systems at Yarmouk University in Jordan, he has

received his Ph.D degree in software engineering from NDSU (USA).

His master from LMU (UK) in electronic Commerce and his B.Sc in

computer science and information systems from Jordan University of

Science and Technology in Jordan. His research interests lays in

software engineering and software testing.

Izzat Alsmadi, is an associate professor in the department of

information systems at Prince Sultan University in Saudi Arabia. He

obtained his Ph.D degree in software engineering from NDSU (USA).

His second master in software engineering from NDSU (USA) and his

first master in CIS from University of Phoenix (USA). He had a B.sc

degree in telecommunication engineering from Mutah university in

Jordan. He has several published books, journals and conference

articles largely in software engineering different fields.

Mohammed Akour, is an assistant professor in the department of

computer information systems at Yarmouk University in Jordan, he has

received his Ph.D degree in software engineering from NDSU (USA).

His master and B.Sc in computer information systems from Yarmouk

University in Jordan. His research interests focuses in software

engineering and adaptive software testing.

http://www.informatik.uni-trier.de/~ley/pers/hd/o/Ohno:Asako.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Savage:Trevor.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Poshyvanyk:Denys.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Revelle:Meghan.html
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Poshyvanyk:Denys.html
http://www.informatik.uni-trier.de/~ley/db/journals/ese/ese16.html#RevelleGP11

International Journal of Software Engineering and Its Applications

Vol.8, No.1 (2014)

214 Copyright ⓒ 2014 SERSC

	Test Cases Selection Based on Source Code Features Extraction
	Repository Citation

	tmp.1568339855.pdf.s345o

