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Abstract 

Extracting valuable information from source code automatically was the subject of many 

research papers. Such information can be used for document traceability, concept or feature 

extraction, etc. In this paper, we used an Information Retrieval (IR) technique: Latent 

Semantic Indexing (LSI) for the automatic extraction of source code concepts for the purpose 

of test cases’ reduction. We used and updated the open source FLAT Eclipse add on to try 

several code stemming approaches. The goal is to check the best approach to extract code 

concepts that can improve the process of test cases’ selection or reduction. 

 

1. Introduction  

In many cases, it is necessary to evaluate automatically software source codes with the 

goal of finding some relevant information for a particular task. For example, traceability 

between source code and related documents such as: requirements, manual, help, designs, 

etc., is required to check that those documents reflect the source code or vice versa. Such 

process can be very complex and time consuming to conduct manually.  

Concept or feature extraction is also widely used in information retrieval (IR) and natural 

language processing (NLP) fields. Search engines for example, response to user queries and 

try to retrieve information that is most relevant to the searched for queries. In NLP, concept 

extraction is used for example to categorize or classify documents, books, articles, etc. based 

on general pre-defined lists. 

The main research aspect in the subject of features or concepts extraction from software 

source code is related to: What to extract or based on what to extract. This can be subjective 

and user defined based on the type and the nature of the source code. This can be also 

generalized based on some generic aspects that can be applied to all software applications 

given a particular context.  

Source code feature or concept extraction approaches use or develop tools to evaluate 

coupling or cohesion aspects between the different elements of the software. Coupling refers 

to the external connections. For example, for a particular method in a program, it can be 

coupled with all methods that it calls or all methods that use or call it. Further, it can be 

coupled with external variables that are used in the method or any other type of software 

components. 

Cohesion refers to the internal relatedness or connection between the components where 

for example several methods in a particular class are expected to be related to each other. 

Such semantic relatedness is translated practically through their call or use of each other. 

Cohesion and coupling metrics are used as code and design quality evaluators where a 

good software is expected to have low coupling and high cohesion. Software metrics and 

metric tools are used to gather metrics related to coupling and cohesion where several metrics 
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are proposed in this area (e.g., Briand et al., [20]). However, in the scope of this paper, 

coupling and cohesion metrics are used feature extraction and similarity evaluation. 

Similar to search in search engines, feature or concept extraction from source code can 

start from concepts or keywords defined by users as an input. Feature extraction tools are then 

used to map code elements that reflect or response to such input concepts or keywords. 

The rest of the paper is organized as the following: Section two presents a literature review 

for papers relevant to the subject of this paper. Section three presents methodology and 

approaches, section four presents experiments and analysis and the paper is concluded with 

conclusion section. 

 

2. Literature Review 

The subject of this paper is related to several categories. First, the paper discusses the use 

of the Information Retrieval (IR) technique: Latent Semantic Indexing (LSI). Test cases 

reduction is used in this paper to direct the source code feature or concept extraction method. 

Perhaps the combination of those three techniques is new and hence we will present papers to 

the combination of those research concepts or areas.  

To the best of our knowledge, the approach presented in this paper is the first attempt that 

utilizing IR-LSI for developing test case reduction approach based on feature extraction. 

Identifying the parts of the source code that correspond to a specific functionality is known 

as feature or concept location [1]. This activity is commonly considered in software 

maintenance and evolution. 

Chen and Rajlich [2] developed a semi-automated approach for locating features based on 

the search of program dependence graph. Other work that tackled the issue of concept or 

feature location include [3, 4], where they utilized reverse engineering approaches and 

visualization. 

 

2.1. IR-LSI Technique for Code Features Extraction 

Liu et al., [5] presented a semi-automated hybrid feature location technique SIngle Trace 

and Information Retrieval (SITIR). They assumed that a single execution trace of a scenario, 

exercising a feature of interest, includes all the essential information to find the most 

important parts of the source code that are implementing this feature. The source code is 

indexed using Latent Semantic Indexing, they asked the users to write queries relevant to the 

desired feature and rank all the executed methods based on their textual similarity to the 

query. To address the accuracy of their approach two open source software (JEdit and 

Eclipse) were used. The result showed that the new technique has high accuracy in 

comparison with, comparable with previously published approaches. 

Marcus et al., [6] Demonstrated a new approach for finding the location of desired concept 

in the source code by utilizing Latent Semantic Indexing (LSI). In their previous work, they 

used LSI to recover traceability links between external documentation and source code [7]. 

As the important difference is that in this application LSI is used to map domain concepts 

formulated as user queries to software components (i.e., query to source). They evaluated the 

two ways of the feature location using LSI (i.e., based on user formulated queries and based 

on partially automated generated queries). 

Moreover, they compared the results of using their approach based on LSI other known 

methods of concept location which are based on static code analysis: a search of the program 

dependency graph and the traditional grep based method. As a case study they tried to locate 

concepts in version 2.7 of the NCSA Mosaic web browser. 
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2.2. Test cases’ Reduction Techniques 

John Regehr et al., [8] started with an existing algorithms called delta debugging in order 

to reduce test cases in C programs that trigger compiler bugs. They designed and 

implemented three new domain specific test case reducers (i.e., Seq-Reduce, Fast-Reduce, 

and C-Reduce ). They compared their reducers against each other and against Berkeley delta 

by using 98 random generated C programs that trigger bugs in production compilers. The 

experiments showed how their reducer achieves the goal of producing reportable and valid 

test cases automatically delta debugging reducers were unsuccessful in generating sufficient 

small test cases.  

Mahapatra and Singh [9] presented a new technique for improving the efficiency of 

software testing by reducing the number of test cases. They summarized their approach in 4 

mains steps and assumed that their reduction steps will lead to less time to test run, and 

generate test cases automatically. They evaluate their technique by comparing it with Get 

Split algorithm technique. The result revealed that the proposed technique achieved greater 

reduction percentage of the test cases and kept test cases generation to a single run. 

Dan Hao et al., [10] Proposed on-demand test suite reduction approach that aimed to 

satisfy the same test requirements as an initial test suite. In order to decrease the losses in 

fault-detection capability after subset selection, they allow the engineer to specify upper 

limits on loss in fault-detection capability and confidence level. They applied their approach 

into eight C programs and one Java program in three scenarios. Their study showed that the 

proposed approach can be effective when it is applied to program versions and sets of similar 

programs.  There was not any comparison with an existing test suite reduction approaches. 

Heimdahl and Devaraj [11] addressed fault detection capability of test suite reduction for 

formal models of software systems. They generated reduced test-suites for a large case 

example of a Flight Guidance System (FGS) that seeded with faults. Their algorithm 

generates reduced test suites for a variety of structural coverage criteria while preserving 

coverage faults. Although their study results emphasize that test-suite reduction of test-suites 

providing structural coverage may not be effective in term of fault, still they need additional 

experiment to generalize their results and hypothesis.  

Several techniques for test suite reduction include the heuristic algorithms, 0-1 integral 

programming are located in the literature [12-14]. These techniques reduce test suites by 

analyzing the harmony between testing requirements and test cases.  

Chen et al., [15] assumed that optimizing testing requirements might lead to solve the 

problem of test suite reduction. To achieve test suite reduction, a graph requirement relation 

contraction method is proposed. They conclude that the result of testing requirement 

optimization is no better than, but close to the result of test case reduction. 

Raamesh and Uma [16] developed an algorithm that reduces test cases and produced 

manageable size of test suit. She addressed the potential shortcoming of existing test suites 

reduction approaches as they might cause high decrease in fault detection effectiveness of the 

reduced suite. The proposed algorithm clusters test cases based on the similarity of their 

execution profiles and produces some representatives to form the reduced test suite. 

Test prioritizing play an important role in test suite reduction, Pravin and Srinivasan [17] 

presented an approach that assign priority for each test case. The priority is given depends 

upon the code coverage, higher priority test case value are selected to be in the reduced test 

suites. To demonstrate the effectiveness of their algorithm, the approach applied on two 

applications. 
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3. Methodology 

In order to evaluate using IR approaches in source codes concepts extraction, we selected 

the open source code: http://marc4j.tigris.org/. The qualifications for such selection include: 

First as this is an open source Java source code and second is that it includes test cases created 

and provided as well by the same team, company or developers. Feature extraction are then 

going to be conducted based on the test cases to check the code or the part of the code that 

responds to the test cases and then prioritize test cases based on that. For example, test cases 

that have no significant code to respond to will be eliminated.  MARC4j is an Application 

Programming Interface (API) for working with MARC (Machine Readable Cataloging) and 

MARCXML 

Open source FLAT3 Eclipse add-on will be customized and used. FLAT3 

(http://www.cs.wm.edu/semeru/flat3/) [18] uses textual static and dynamic techniques for 

source code features’ location techniques based on users’ input queries or keywords. Textual 

extraction is used with the assistant of Lucene library: (http://lucene.apache.org/java/docs). 

Dynamic feature extraction is used with the assistant of MUTT library: 

(http://sourceforge.net/projects/muttracer).It also includes feature annotation capabilities and 

uses such annotations for calculating coupling features. The tool itself uses and extends 

earlier tools such as ConcernMapper [19]. LSI is conducted part of the tool for evaluating 

textual similarities. Figure 1 shows the overall architecture of FLAT3 [18]. 

 

Figure 1. FLAT3 Overall Architecture [18, 22] 

As the tool is open source, we modified stemming algorithms and details to evaluate the 

value of textual similarities based on different selections. For example, we evaluate the effect 

of keeping or eliminating programming reserved keywords (e.g., public, private, int, etc.,) on 

the effectiveness of the stemming and textual similarity processes. Original implementation of 

stemming in FLAT3 includes stemming all keywords. It also include splitting compound 

names (e.g., calculateAverage into calculate and average). 

 

4. Case study: Experiment and Analysis  

We have conducted extensive experiments using Eclipse plugin called FLAT3. This plugin 

is an open source, and we have made changes on it. As mentioned in the mythology we 

selected the open source code: http://marc4j.tigris.org/ as the testing case study. This is 

largely as the open source includes test cases written and published. We will evaluate 

http://marc4j.tigris.org/
http://www.loc.gov/marc/
http://www.loc.gov/standards/marcxml/
http://www.cs.wm.edu/semeru/flat3/
http://marc4j.tigris.org/
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similarity between test cases and source code. We ran four different experiments. In the first 

one we use the plug-in as is, the second one we changed the stemming and pre processing 

techniques into excluding stop words and keeping the splitting identifiers, the third one 

including updated stop words and splitting identifiers and the fourth one including the 

updated stop words and excluding the splitting identifiers. 

A similarity index value ranges between 0 and 1. One means identical match between the 

query and the retrieved text. Percentage below this then reflects the level of similarity 

between both elements. 

The following tables show the weights (similarity) of each test class name towards the 

application or system under test. 

Table 1. Weights of Tested Classes using FLAT3 using Default Tool Settings 

Test Class Name Weight 

DataFieldTest 3.611 

ControlFieldTest 0.354 

RecordTest 11.34 

LeaderTest 3.898 

ReaderTest 11.461 

WriterTest 31.461 

RoundtripTest 12.544 

Total 74.669 
 

Table 1 shows the weight of each test class towards the system under test using the 

FLAT3. The results show that the WriterTest class has the highest weight of 74.67. The 

RecordTest and ReaderTest classes have almost the same weight 11.34, 11.461 accordingly. 

The results also show that the ControlFieldTest has the lowest weight. Those weights are 

evaluated based on the test cases. For example, a class with the highest weight in this table 

means that it is getting the highest percentage of test cases in comparison with other classes. 

Table 2 shows the weight of each test class towards the system under testing after modifying 

the stemming and pre processing. 

Table 2. Weights of Tested Classes Excluding Stop Words and Including the 
Splitting Identifiers 

Test Class Name Weight 

DataFieldTest 3.862 

ControlFieldTest 0.354 

RecordTest 12.36 

LeaderTest 4.024 

ReaderTest 11.0544 

WriterTest 29.583 

RoundtripTest 13.26 

Total 74.4974 
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Here the stops words are removed and the splitting identifiers are kept. The results show 

that the weights are just a bit less than the weights in Table 1. Table 3 shows the weight of 

each test class towards the system under testing after modifying the stemming and pre 

processing. 

Table 3. Class Weights with Updating Stop Words and including the Splitting 
Identifiers 

Test Class Name Weight 

DataFieldTest 3.611 

ControlFieldTest 0.354 

RecordTest 11.833 

LeaderTest 3.898 

ReaderTest 10.222 

WriterTest 32.095 

RoundtripTest 10.53 

Total 72.543 
 

In this third case, the stops words are updated by adding new stop words and the splitting 

identifiers are kept. The results show that the weight of RecordTest class is greater than the 

weight of the RoundtripTest class where in the previous results the weight of the 

RoundtripTest class is always greater than the weight of RecordTest class. Table 4 shows the 

weight of each test class towards the system under testing after modifying the stemming and 

pre processing activities. 

Table 4. Class Weights with Modifying Stop Words List and Excluding the 
Splitting Identifiers 

Test Class Name Weight 

DataFieldTest 4.485 

ControlFieldTest 0.283 

RecordTest 3.163 

LeaderTest 1.672 

ReaderTest 8.349 

WriterTest 29.082 

RoundtripTest 6.444 

Total 53.478 
 

In the fourth case, the stops words are updated by adding new stop words and the splitting 

identifiers are excluded. The results show that there is a significant change according the 

previous results. The weights are decreased clearly. This leads to the conclusion that the 

splitting identifiers process has a high impact on the results. Table 5 shows the weight of each 

test case towards the system under test using the FLAT3. 
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Table 5. Test Cases’ Weight 

Test Case Name Weight Test Case Name Weight 

testConstructor 1.655 testMarcStreamReader 3.462 

testSetData 0.354 testMarcStreamWriter 11.593 

testComparable 0.7 testMarcXmlReader 7.999 

testGetFields 0.533 testWriteRead 6.428 

testFind 9.593 testWriteReadUtf8 6.116 

testAddSubfield 0.599 testMarcXmlWriter 10.356 

testMarshal 1.424 testWriteAndRead 9.512 

testUnmarshal 2.474 testSetSubfield 0.657 

testCreateRecord 1.214   

sum 74.669 
 

The results show that the test case testMarcStreamWriter has the highest weight which 

means that this test case is related more to the system under test. The second highest weight is 

for the testMarcXmlWriter test case. Whereas the testSetData test case has the lowest weight 

which is 0.354.  

Table 6. Excluding Stop Words and Including the Splitting Identifiers 

Test Case Name Weight Test Case Name Weight 

testConstructor 1.724 testMarcStreamReader 2.7104 

testSetData 0.354 testMarcStreamWriter 11.038 

testComparable 0.7 testMarcXmlReader 8.344 

testGetFields 0.627 testWriteRead 6.63 

testFind 9.85 testWriteReadUtf8 6.63 

testAddSubfield 0.678 testMarcXmlWriter 9.343 

testMarshal 2.53 testWriteAndRead 9.202 

testUnmarshal 1.494 testSetSubfield 0.76 

testCreateRecord 1.883   

sum 74.4974 
 

Table 6 shows the weight of each test case towards the system under testing after 

modifying the stemming and pre processing. Here the stops words are removed and the 

splitting identifiers are kept. The results show that the weights are just a bit less than the 

weights in Table 5.  

Table 7. Updated Stop Words and Including the Splitting Identifiers 

Test Case Name Weight Test Case Name Weight 

testConstructor 1.655 testMarcStreamReader 2.533 

testSetData 0.354 testMarcStreamWriter 11.283 

testComparable 0.7 testMarcXmlReader 7.689 
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testGetFields 0.533 testWriteRead 5.265 

testFind 9.593 testWriteReadUtf8 5.265 

testAddSubfield 0.599 testMarcXmlWriter 9.427 

testMarshal 2.424 testWriteAndRead 11.385 

testUnmarshal 1.474 testSetSubfield 0.657 

testCreateRecord 1.707   

sum 72.543 

 

Table 7 shows the weight of each test case towards the system under testing after 

modifying the stemming and pre processing. Here the stops words are updated by adding new 

stop words and the splitting identifiers are kept. The results show that the weight of 

testWriteAndRead test case is greater than the weight of the testMarcStreamWriter test case 

in just a bit. 

Table 8. Updated Stop Words and Excluding the Splitting Identifiers 

Test Case Name Weight Test Case Name Weight 

testConstructor 1.926 testMarcStreamReader 1.349 

testSetData 0.283 testMarcStreamWriter 11.112 

testComparable 0.65 testMarcXmlReader 7 

testGetFields 0.391 testWriteRead 3.222 

testFind 1.054 testWriteReadUtf8 3.222 

testAddSubfield 0.849 testMarcXmlWriter 8.461 

testMarshal 1.006 testWriteAndRead 9.509 

testUnmarshal 0.666 testSetSubfield 1.06 

testCreateRecord 1.718   

Total 53.478 

 

Table 8 shows the weight of each test case towards the system under testing after 

modifying the stemming and pre processing. Here the stops words are updated by adding new 

stop words and the splitting identifiers are excluded. The results show that there is an obvious 

change according the previous results. The weights are decreased clearly. This leads that the 

splitting identifiers has high impact on the results. 

 

5. A comparison Study 
We will compare experiment in our paper with two case studies:case1. Revelle et 

al., [23] which describes the usage of FLAT3 tool. Case 2.Liu et al., [24] which 

shows how to locate feature by using information retrieval based on filtering of a 

single scenario execution trace  
 

5.1. Case 1: 

The authors of this paper propose and define feature coupling metrics derived from two 

different sources of information: 1.Structural Feature Coupling (SFC) which gets and obtains 

the association among two features according to the structure information. 2. Textual Feature 
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Coupling (TFC) captures the relationships among two features according to the textual 

information in source code by using Latent Semantic Indexing technique (LSI).  

 

5.1.1 Case Study and Methodology 

They have done three case studies; the first case study investigates the association among 

fault proneness and feature coupling by computing  the relationship among  bugs and the 

metric values for every single pairs of features in dvViz nad Rhino applications. The second 

case study explores the impact analysis in the feature coupling metrics to determine if other 

features are affected by another feature which is currently modified. The third case study is a 

survey where done among 31 programmers to evaluate the power of coupling among 16 

chosen pairs randomly of features from dbViz, Rhino, and iBatis applications. dbViz7 is an 

open source code for database visualization written in Java, it includes ninety three classes 

implemented in five hundred and fifty four methods with twelve thousands and seven 

hundreds lines of code.  Rhino includes one hundred and thirty eight classes implemented in 

one thousand and eight hundreds methods with thirty two thousands line of code in java 

script. iBatis is an object-relational mapping tool consists of two hundreds and twelve classes 

implemented in more than one thousand and eight hundreds methods with thirteen thousands 

and three hundreds of lines of code. 

 

5.1.2. Results  

The results of all three studies show that the feature coupling metrics are certainly practical 

and useful in evaluating the impact of change, directing and guiding the testing process, 

locating and finding bugs.  

 

5.2. Case 2: 

The authors of this paper propose a hybrid approach for feature location called SIngle 

Trace and Information Retrieval (SITIR). The approach is based on execution just a single 

scenario that employs a specific feature and then traces that execution, then using the Latent 

Semantic Indexing (LSI) technique to do textual analysis on the traces in order to obtain the 

related source code regarding to the executed scenario. 

 

5.2.1. Case Study and Methodology  

They have done two cases studies to assess the performance of their approach (SITIR). The 

first case study includes the locating three features (“Search, Add marker and Show 

whitespace”) in JEdit application related with change requests using two techniques LSI and 

SITR. JEdit is an open source code for text editor; it includes five hundreds classes 

implemented in five thousand methods and eighty eight thousands lines of code written in 

Java. The second case study includes locating three features (“Select, Add files and Search”) 

in Eclipse related to the bugs using three techniques LSI, PROMESIR, SITIR and SPR. 

Eclipse is an open source code for integrated development environment; it includes seven 

thousands classes implemented in eighty nine thousands methods and more than eight 

thousand source code file and more than two millions and four hundred thousand line of code 

written mainly in Java with a bit of C and C++. 

 

5.2.2. Results  

In the first case study the results indicate that the SITIR is notably less sensitive to the 

weak user quires than LSI merely. In the second case the results show that SITIR exceeds 
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SPR and LSI in finding bugs associated features in Eclipse, also the results show that SITIR 

and PROMESIR are similar in locating bugs. 

 

6. Conclusion 

In this paper, we propose a new technique for test case selection and reduction based on 

feature or concept testing by using information retrieval, latent semantic indexing. Our 

approach uses LSI to find the semantic similarity among source code and test cases in order to 

find the test case that has the highest weight. A case study of finding the semantic analysis 

among test cases and source code in MARC4j is analyzed and presented. We have tried and 

compared the results of four different steaming approaches; the first one we use the FLAT3 

plug-in as is, the second one we changed the stemming and pre processing techniques into 

excluding stop words and keeping the splitting identifiers, the third one including updated 

stop words and splitting identifiers and the fourth one including the updated stop words and 

excluding the splitting identifiers. The results show that splitting identifiers has high impact 

on the semantic similarity. 
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