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Abstract

Background: The impact of the intrauterine environment on the developmental programming of adult female reproductive
success is still poorly understood and potentially underestimated. Litter size variation in a nonhuman primate, the common
marmoset monkey (Callithrix jacchus), allows us to model the effects of varying intrauterine environments (e.g. nutrient
restriction, exposure to male womb-mates) on the risk of losing fetuses in adulthood. Our previous work has characterized
the fetuses of triplet pregnancies as experiencing intrauterine nutritional restriction.

Methodology/Principal Findings: We used over a decade of demographic data from the Southwest National Primate
Research Center common marmoset colony. We evaluated differences between twin and triplet females in the number of
pregnancies they produce and the proportion of those pregnancies that ended in fetal loss. We found that triplet females
produced the same number of total offspring as twin females, but lost offspring during pregnancy at a significantly higher
rate than did twins (38% vs. 13%, p = 0.02). Regardless of their own birth weight or the sex ratio of the litter the experienced
as fetuses, triplet females lost more fetuses than did twins. Females with a male littermate experienced a significant increase
in the proportion of stillbirths.

Conclusions/Significance: These striking findings anchor pregnancy loss in the mother’s own fetal environment and
development, underscoring a "Womb to Womb" view of the lifecourse and the intergenerational consequences of
development. This has important translational implications for understanding the large proportion of human stillbirths that
are unexplained. Our findings provide strong evidence that a full understanding of mammalian life history and reproductive
biology requires a developmental foundation.
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Introduction

Developmental programming theory suggests that the intra-

uterine environment – the intersection of maternal ecology and

fetal development [1] – can have a lasting impact on adult health

and function. A consistent link has been found in humans and

animal models between maternal energy status during gestation or

low birth weight (a proxy of a stressed developmental milieu), and

obesity, diabetes, chronic cardiovascular disease, and reduced

immunocompetence in adolescent and adult offspring [2–4]. Birth

weight is the most common proxy measure of the quality of the

intrauterine environment in mammals; it is easily measured and is

strongly linked to postnatal and adult outcomes in a wide variety of

species, including humans [2,5]. However, birth weight itself is a

product of dynamic processes experienced by the mother prior to

conception and by both mother and fetus throughout gestation,

and cannot be taken to reflect the entirety of these intrauterine

processes [1]. While low birth weight has associations with later life

outcomes, the intrauterine environment may be altering develop-

ment of physiological function in ways that are not reflected by

birth weight. Developmental programming occurs across the

range of birth weights, not just at the low end [6,7]. For example,

maternal dietary composition may have differential impact on fetal

endocrine pancreas development leading to diabetes in later life,

without producing reductions in fetal body weight [8].

Fetal number is another source of variation in the quality of the

intrauterine environment that may have intergenerational effects.

One of the classic life history tradeoffs is the balance between
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number and quality of offspring [9,10]. As the number of offspring

increases, individual weights decrease, sometimes with impact on

mortality risk [10]. Increased fetal number is associated with

reduced birth weight and greater perinatal mortality in many taxa

(sheep [11]; wood rats [12]; red squirrels [13]; common marmosets

[14,15]; humans [16]). Litter size does not account entirely for

variation in birth weight [17], suggesting that these phenomena

and their downstream effects may be decoupled under certain

circumstances. Little is known about the long-term life history and

reproductive impact of litter size at birth when controlled for birth

weight.

The common marmoset monkey (Callithrix jacchus), like all

marmosets and tamarins (Order, Primates; Suborder, Anthropoi-

dea; Family, Cebidae; Subfamily, Callitrichinae [18]), expresses a

highly plastic reproductive phenotype, regularly producing litters

ranging from one to five multizygotic fetuses in captivity. Twins

and triplets are the most common litter sizes [19] and mixed sex

litters occur frequently. This variability is tied to maternal ecology;

elevated maternal mass is the best predictor of greater ovulation

number and litter size [20]. Individual repeatability of litter size is

low, and the litter size a female experiences as a fetus does not

predict the litter size she will produce as an adult, together

suggesting that litter size is not genetically constrained but

ecologically responsive [16,20,21]. Importantly, several occurrenc-

es of triplets have been observed in wild callitrichine species as well

(cotton-top tamarins [22]; common marmosets [23]; golden lion

tamarins [24]). This suggests that conceiving and gestating

(although not rearing [19,25]) more than two fetuses may be a

common a feature of callitrichine reproductive biology both in the

wild and in captivity. Variation in fetal number presents the

opportunity to model varying intrauterine environments and their

long-term effects.

We have shown previously that triplet marmosets experience an

intrauterine environment that is qualitatively poorer than that

experienced by twins, based on differences in maternal: neonatal

weight ratios and placental efficiency [1,26] and microscopic

characteristics of the placental interface [27,28]. Further, while

both twins and triplet marmosets born at high birth weights tend

to grow into high-weight adults, low birth weight triplets are much

more likely to grow into large adults than are low birth weight

twins [29,30]. This pattern of ‘‘centile crossing’’ over the lifecourse

has been implicated in the developmental programming literature

as the phenotype carrying the greatest risk of adult disease [31–

34]. For these reasons, twin marmosets can be viewed as the

‘‘control’’ developmental phenotype, with triplets exhibiting the

‘‘restricted’’ developmental phenotype. Triplet females also carry

the potential burden of greater exposure to prenatal androgens

from their male littermates.

This paper first characterizes reproductive parameters in a

colony of captive common marmoset monkeys (Callithrix jacchus)

overall and according to litter size and birth weight, and then

explores the relationship between a female marmoset’s birth

condition (her litter size, intralitter sex ratio, and birth weight) and

her risk of pregnancy loss in adulthood.

Methods

Ethics Statement
All animal procedures, husbandry, and housing were conducted

according to Southwest National Primate Research Center

Institutional Animal Care and Use Committee requirements.

Colony and Housing
Demographic records from the Southwest National Primate

Research Center in San Antonio, Texas dating from 1994 to 2012

were available for a total of 1395 animals of both sexes and all

birth conditions. Because the intent was to focus on the

intrauterine contribution to life history and reproductive output,

analyses were restricted to females for whom a full complement of

birth condition (weight and litter size) and adult reproductive

parameters were known. Analyses were conducted on subsets of

this group (i.e. twins and triplets). Adult females were housed with

at least their adult male mate, but often with older offspring. It is

not uncommon for the family group to contain adolescent,

juvenile, and infant offspring at the same time. Family structure at

the time of each pregnancy studied was not recorded and thus

could not be considered in this study. Groups were housed

according to Institutional Animal Care and Use Committee

standards for marmosets.

Coding Pregnancy Loss
In the original database birth status was coded as follows:

STILL, meaning fully developed fetus delivered at term with no

sign of earlier death in utero and/or no lung flotation; DIU (‘‘dead

in utero’’), meaning a mostly or fully developed fetus either aborted

or discovered at term delivery but showing clear evidence of

in utero death preceding labor (macerated flesh, skin slippage,

‘‘mushiness’’); and ABORT, meaning found or delivered before

due date (gestation in common marmosets is ,143 days, [35]). All

of these categories were combined to generate total loss. Thus,

early loss is likely conflated with the equivalent of antepartum

stillbirth, i.e. fetal loss occurring in the last trimester but prior to

labor and delivery. Related to this limitation, we do not have any

record of offspring that were lost so early that there was no visible

evidence of loss so we cannot extrapolate our findings to very early

pregnancy loss. Further, given that placentophagy and even

fetophagy are not uncommon practices and that parturition is

typically nocturnal, our estimates of loss of even late gestation

fetuses may be underestimated. Finally, we did not regularly

conduct lung flotation, a highly accurate method of determining

stillbirth in humans [36].

Predictor and Outcome Variables
Litter size at birth was the most consistently used predictor

variable. We evaluated the impact of litter size on total number of

offspring produced, total litters produced, total lost fetuses, total

affected litters (litters in which at least one fetus was lost), and total

lost litters (litters wherein all fetuses were lost), all fitted as

continuous variables. We controlled all regression models for birth

weight, birth year (to control cohort effects), and early adult

weight. As described by Tardif and Bales [29], early adult weight

was measured between 17–22 months. This is a few months later

than the average age of puberty (11–13 months) and precedes the

average age of first conception (2.49 years) [19], but reflects the

achievement of adult weight [37,38].

Statistics
Although litter size ranges from 1–5 in the captive common

marmoset, analyses were restricted to twins and triplets because

these are by far the two most representative litter sizes of origin of

those females who survived to the age of maturity. All analyses

were conducted using Stata for Windows, version 10 IC

(StataCorp, College Station, TX). Two-tailed T-tests were used

to compare twins and triplets to each other in terms of birth

condition and other life history characteristics. Z-tests were used to

Early Origins of Stillbirth in Marmoset Monkeys
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test the significance of the difference in proportion of fetal losses

between twin and triplet females. There were nine pairs of females

(total n = 18 out of 62) in the sample who were born into the same

litter. We used two-tailed T-tests to compare females with and

without littermates in the study in terms of birth condition and the

other life history characteristics.

In some cases we wanted to evaluate the predictive relationships

between litter size and pregnancy loss variables; therefore, we used

simple and multiple linear regression modeling. We assigned all

females a litter ID (to control for those females born into the same

litters as described above) and ran that ID as a random effect in

regression models. We assumed that many of our predictor and

outcome variables in these models would exhibit collinearity.

Therefore, all models were evaluated for collinearity using the estat

VIF command in Stata to measure the variance inflation factor.

Models returning a VIF of .5 (indicative of high collinearity) were

subject to rejection; none of our models returned a rejectable VIF.

Data Availability
Raw data are stored in databases at the SNPRC and the

University of Illinois at Chicago. Requests for data can be directed

to the primary author.

Results

Birth Condition and Reproductive Demographics of the
Southwest National Primate Research Center Female
Marmosets

At the time of these analyses, there were 1395 animals in the

Southwest National Primate Research Center marmoset colony

database; a large proportion of this number includes animals that

died before juvenility. Of adult animals, 113 were reproducing

females. Not all females were born in the colony or entered the

colony with birth data, so litter size at birth was known for 79 of

these females, of which 75 were either twins (n = 37) or triplets

(n = 38). These 75 females accounted for 94.95% of the

reproducing females of known litter size at birth; remaining

analyses are thus restricted to these twin and triplet females. When

restricted to twin and triplet females of known birth weight and

early adult weight, the sample size for analysis was 62 (twins = 30,

triplets = 32; Table 1). Sex composition of a female’s birth litter

was known for 27 twins and 29 triplets.

Females who had littermates in the study (n = 20) did not differ

from the rest of the sample (n = 42) in litter size, birth weight, or

adult weight; they had significantly fewer male littermates than the

rest of the sample (Table S1). Triplets were born at significantly

lower birth weights than twins, but did not differ significantly in

weight at the early adulthood mark (Table 1). Birth weight and

adult weight were divided into high and low categories via median

splits. Low birth weight triplets were significantly more likely to

grow into high weight adults than were low birth weight twins.

Impact of Birth Weight and Litter Size on Reproductive
Parameters in Adulthood

Twins and triplets did not differ in their age at first

reproduction, nor did they differ in the number of litters produced

or the total number of offspring gestated (Table 1). Triplet females

were not more likely than twin females to produce triplet litters.

None of these outcomes differed when females were stratified on

birth weight (Table S2). Females with littermates in the study did

not differ from the rest of the sample in age at first reproduction or

in the total number of offspring produced (Table S1).

Despite the lack of difference in total offspring gestated, triplets

lost three times as many offspring during pregnancy (Table 1).

Triplet females tended to experience these losses across more

pregnancies than did twins, with triplets losing entire litters 2.48

times more than twins, though this difference was not significant

(p = 0.07; Table 1). Similar analyses of adult females stratified by

birth weight showed no differences in rates of loss (Table S2).

Triplet females lost more fetuses in each of three categories of birth

weight (Figure 1), with the difference being significant in low and

medium weight categories. Triplet females who were born in the

lowest birth weight tertile experienced the highest proportion of

fetal loss in adulthood.

A multiple regression model including a female’s own litter size,

birth weight, early adult weight, and birth year significantly

predicted her rate of total loss, explaining 19% of the variance

(Table 2: model 1). In this model, litter size was the sole significant

independent predictor of a female’s rate of total stillbirth rate: the

larger the litter at birth, the greater the rate of loss in adulthood. A

multiple regression model excluding birth weight remained

predictive of total loss, with litter size being the sole predictor of

loss (Table 2: model 2). When litter size was excluded, none of the

models were significant overall (Table 2: model 3). Models

containing litter size tended to explain a greater proportion of

the variance in the outcomes than those without. Litter size alone

explained 18% of the variance in total loss, compared to only 7%

for birth weight alone (Table 3: models 1 and 2).

The impact of exposure to male littermates on pregnancy

success in the adult females was assessed in three ways. First,

females with littermates in the study differed from the rest of the

sample in being less likely to have had a male littermate compared

to the rest of the sample. These females did not differ in the

number of total offspring produced, but they had significantly

lower loss rates compared to the rest of the sample (Table S1).

Second, females with one or more brother regardless of litter size

experienced a significant increase in fetal loss compared to females

from female-only litters (Figure 2). Third, male exposure as a

function of litter size was assessed. Twin females had an average of

0.48 brothers in utero, compared to triplets who had 1.22 brothers

(p,0.00001; Table 1). Twin females were equally likely to have

had either a male or a female littermate (Figure 3). In contrast,

85% of triplet females had either one or two male littermates; only

4 of the 27 triplet females for whom birth sex ratio was known

were born into all-female litters (Figure 3). The triplets did not

exhibit a significant dose response of fetal loss to having one versus

two male littermates (z = 0.33, p = 0.74; data not shown). A

categorical variable (zero versus one or more) was thus constructed

for both twins and triplets. Twin females lost 2.91 more fetuses

when they were exposed to a brother (p = 0.05, Table 4) as

opposed to a sister. There was not a significant effect of male

exposure on fetal loss in the triplet females.

Discussion

Consistent with our previous work, triplets were born at

significantly lower birth weights than were twins. Further, triplets

were significantly more likely than twins to exhibit a lower birth

weight/higher adult weight profile. This is consistent with the

classic growth-restricted phenotype that is typically thought to

present the highest risk within the developmental programming

paradigm [30], strengthening the concept of the marmoset

monkey triplet as a model of disrupted growth and development.

In further support, females born as triplets lose nearly three times

as many offspring before birth than do females born as twins. This

robust and highly striking finding speaks to the importance of

Early Origins of Stillbirth in Marmoset Monkeys
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considering a female’s own intrauterine development when

considering adult reproductive success and thus fitness. Triplet

marmosets are born at lower birth weights than twins raising the

possibility that birth weight may be driving fetal loss in adulthood.

However, analyses of the effect of birth weight separate from litter

size do not support this conclusion. Litter size is independent of

birth weight as a risk factor for pregnancy loss in adult female

marmosets, strong evidence that differential developmental

trajectories not reflected in birth weight have a critical impact

on reproductive outcomes in adulthood. That litter size in the

marmoset and other species is related to maternal energetic

condition at multiple time points (e.g. ovulation, conception,

gestation) suggests that dynamic and complex physiology-ecology

interactions within and between generations are central to

understanding the evolution of life history variation within and

between species.

Maternal birth weight influences fertility [39], offspring birth

weight, preterm delivery, infant and perinatal mortality [40].

However, only a few studies have demonstrated a link between

proxies of a female’s own growth in utero and fetal loss experienced

in adulthood. For example, women who as a fetus experienced

nutrient restriction during the third trimester due to the Dutch

Table 1. Sample characteristics, stratified by litter size.

All (n = 62)
Mean (±SD)

Twins*
(n = 30)
Mean (±SD)

Triplets*
(n = 32)
Mean (±SD) P value

Number of male littermates 0.84 (0.71) 0.48 (0.51) 1.22 (0.70) ,0.00001

Birth weight (bw), g 29.90 (3.19) 31.17 (3.29) 28.72 (2.62) 0.002

Early adult weight (eadwt), g 414.09 (83.07) 403.76 (75.87) 423.78 (89.41) 0.35

Low bw & high eadwt**, @ 28% 13.79% 40.74% 0.01

Age at first reproduction, years 2.94 (0.62) 3.00 (0.11) 2.88 (0.11) 0.43

Total number of litters 3.92 (3.28) 3.87 (2.67) 3.97 (3.80) 0.90

Triplet litters, out of total litters 40.58% 47.63% 33.97% 0.14

Total number of offspring 9.81 (8.68) 9.90 (7.31) 9.72 (9.92) 0.97

% Offspring lost** 26.03% 12.97% 38.27% 0.02

Affected litters***, out of total litters** 35.85% 26.70% 44.42% 0.14

Entire litter lost, out of total litters** 22.15% 12.55% 31.15% 0.07

@Median split: low birth weight #27.86 g, high adult weight $479.20.
*Unpaired two-tailed T-test.
**Out of total number of offspring; Difference in proportion, unpaired two-tailed Z-test.
***Litter affected by loss of at least one fetus.
doi:10.1371/journal.pone.0096845.t001

Figure 1. Pregnancy loss in twin and triplet adult females across three tertiles of the females’ own birth weights.
doi:10.1371/journal.pone.0096845.g001
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Famine during World War II had a significantly higher rate of

stillbirth and perinatal mortality than women who were not

exposed to famine as fetuses [41]. In female rhesus macaques, low

maternal birth weight was associated with producing more

stillborn offspring as well as later age at first reproduction and

smaller offspring [42]. The marmoset model presented here

augments these previous findings while allowing us to view

developmental programming across the range of birth weight.

Triplets had poorer reproductive outcomes than twins across all

categories of birth weights, even ‘‘normal’’ birth weight. Similar

birth weights in two infants may or may not predict the same

outcome [1]. Restricted or redistributed nutrient flow may not

result in overall reductions in birth weight in order to maintain

adequate brain and somatic growth, while non-essential systems

(e.g. reproductive organs, hypothalamus-pituitary-ovarian (HPO)

axis) may be affected adversely. Thus, average-sized marmoset

triplets may have ‘‘growth-impaired’’ reproductive phenotypes,

which would account for significant litter size differences in

offspring viability regardless of birth weight. That said, reproduc-

tive function in triplet females appears to be particularly poor for

those born at low weights.

The source of such extreme discrepancies in the triplet

marmoset female’s ability to successfully gestate fetuses to term

is unclear, though some lines of evidence suggest that differential

development of the HPO axis and reproductive tract play

important roles. For example, small for gestational age (SGA)

adolescent girls have been reported to exhibit reduced ovarian

dimensions [43] and reduced Follicle-Stimulating Hormone (FSH)

at 18 years of age [44]. Adult reproductive function thus could

have fetal origins in the development of the hypothalamus and

pituitary, which in turn would have an impact on both pituitary

FSH production and ovarian organogenesis. Even earlier on the

developmental timeline, germ layer migration and differentiation

could contribute to differential HPO function. These findings

suggest the possibility that triplet marmosets experience altered

intrauterine development affecting ovarian size, the quality of the

primordial follicle pool, precedents of endometrial function (with

implications for implantation and placentation), and even the

HPO axis. Uterine size and vasculature may also be altered.

Limiting the physical or functional capacity of the uterus in a litter-

bearing primate could have direct effects on the ability to gestate

live offspring to term. Prospective studies are underway to track

the development and function of these systems from birth to first

pregnancy in female marmosets in this colony.

Transfer of prenatal testicular androgens to female fetuses as a

function of mixed sex litters is a key factor driving differential

reproductive development in several mammalian species. For

example, female mice flanked by brothers in utero have a longer

anogenital distance (AGD) which is considered a masculinized

phenotype [45]. In female swine, number of male littermates is

associated with a longer AGD [46]. Some physiological correlates

of male littermate androgen exposure in female mice include

increased circulating testosterone at birth [47] and in adulthood,

decreased likelihood to become pregnant [48] and fewer viable

litters [49]. Data are sparse for similar effects in marmosets or their

close litter-bearing relatives, the tamarins. Prenatal androgen

levels in marmosets are variable and thought to be largely of

maternal or placental origin, as they are apparently not related to

overall litter size or presence or number of male fetuses [50,51].

However, given current methods, it is still unknown to what extent

male marmoset fetuses are producing testicular androgens [51].

Regardless of the source, marmosets are often described as

escaping the virilizing effects of prenatal androgens, in part

because much of genital differentiation occurs postnatally [52].

Table 2. Multiple regression models predicting pregnancy loss in adult female marmosets (n = 62).

Model 1: All predictor variables
b (95% C.I.) Total*

Model 2: Birth weight excluded
b (95% C.I.) Total**

Model 3: Litter size excluded
b (95% C.I.) Total

Litter size at birth 0.23** (0.07, 0.39) 0.26 *** (0.11, 0.40) –

Birth weight (g) 20.01 (20.04, 0.02) – 20.03* (20.05, 20.003)

Birth year 0.0007 (20.02, 0.02) 20.001 (20.02, 0.02) 0.004 (20.02, 0.02)

Adult weight (g) 20.0002 (20.001, 0.001) 20.0003 (20.001, 0.001) 0.0001 (20.001, 0.001)

Model R2 0.19 0.18 0.08

****p, = 0.0001,
***p, = 0.001,
**p, = 0.01,
*p, = 0.05.
doi:10.1371/journal.pone.0096845.t002

Table 3. Simple regression models predicting pregnancy loss in adult female marmosets (n = 62).

Model 1: Birth weight only b (95% C.I.) Model 2: Litter size only b (95% C.I.)

Litter size at birth – 0.25*** (0.11, 0.39)

Birth weight (g) 20.03* (20.05, 0.002) –

Model R2 0.07 0.18

****p, = 0.0001,
***p, = 0.001,
**p, = 0.01,
*p, = 0.05.
doi:10.1371/journal.pone.0096845.t003
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However, one colony reported a high incidence (,32%) of

ambiguous or masculinized genitalia in female marmoset new-

borns [53]. In recent years, there have been two reports of

individual female marmosets or tamarins with masculinized

genitalia that express either the testis-determining Sry gene, the

Y-linked zinc finger protein gene (ZFY), or both [54,55]. The ZFY

female described in Smith et al. (2013) had a male littermate,

making it ‘‘difficult to disentangle genetic from endocrine

influences’’ (p.110, [52]). Given the current state of understanding,

the organizing effects of male testicular androgens on their female

siblings in utero cannot be ruled out. At this point it is also entirely

unknown whether or the extent to which placental androgens

differ in mixed sex marmoset litters.

The results of the current study further suggest that male

exposure in utero may indeed have an effect on a female’s

reproductive development in the marmoset monkey. Although

we did not have direct measures of androgen levels, we observed

that females who shared the womb with any brothers were

significantly more likely to lose offspring during gestation, with loss

rates threefold greater than those females from all female litters. In

our sample, this effect is most apparent in twins. Twin females lost

significantly more offspring in adulthood when they shared the

womb with a brother instead of a sister. The existence of a

‘‘brother effect’’ on twin female marmosets is potential evidence

for an organizing effect of testicular androgens. If this is the case,

then it is reasonable to expect that triplets would exhibit a higher

degree of loss with increasing potential exposure to brothers

in utero. However, the effect on triplet females was not significant,
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Figure 2. Pregnancy loss across all adult females according to
number of brothers with whom they shared the womb during
their own fetal period.
doi:10.1371/journal.pone.0096845.g002
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regardless of the number of male littermates. Our sample size may

be inadequate to tease out a ‘‘brother effect’’ in triplets. There

were only four all-female triplet litters, compared to the even

distribution of male-female and female-female twin litters,

precluding appropriate statistical testing of differences.

The pattern thus far elucidated hints that disordered reproduc-

tive development leading to pregnancy loss in triplet marmoset

females is severe. It is important to note that among mammals,

primates are unique in having what is called the fetal zone of the

adrenal gland, which actively produces the androgens dehydro-

epiandrosterone (DHEA), DHEA-sulfate (DHEA-S), and andro-

stenedione during gestation [56]. The placenta aromatizes adrenal

androgens to estrogen, thus providing a buffer to female fetuses

[57]. However, this phenomenon is best studied in primates that

produce singletons; little is known about this process in the litter-

bearing marmosets and tamarins. Further, the pattern of placental

corticotrophin releasing hormone (CRH) production differs

between the monkeys and apes (including humans) [58]. CRH is

the hormone – usually produced by the hypothalamus - that

stimulates the pituitary to produce adrenocorticotrophin (ACTH).

In turn, ACTH stimulates the fetal zone of the adrenal gland to

produce androgens and glucocorticoids. In apes and humans, high

levels of CRH are maintained throughout pregnancy and are

correlated with estrogen levels. In contrast, in the marmoset

monkey and the baboon CRH levels rise early in gestation, peak

mid-gestation, and then drop precipitously, suggesting that human

patterns in this regard may not be applicable to the marmoset

[58]. Together, these findings raise the possibility that female

fetuses may be more vulnerable to prenatal androgens in the litter-

bearing marmosets and tamarins than in other primates. Thus, we

speculate that the difference in baseline reproductive performance

between twin and triplet marmoset females may be due at least in

part to the cumulative effect of adrenal androgen production and

insufficient placental buffering across more fetuses in triplet litters,

which could then be exacerbated by testicular androgen produc-

tion by brothers. Another explanation of the ‘‘brother effect’’

could be that males are born at larger birth weights, thus

monopolizing maternal nutrients and disrupting female littermate

development through nutrient allocation. However, males and

females are born at similar birth weights. Certainly more

comprehensive data are needed to fully interrogate the intrauter-

ine impact of brothers versus sisters on female, specifically the role

Figure 3. Distribution of brothers with whom twin and triplet females shared the womb during their own fetal period.
doi:10.1371/journal.pone.0096845.g003
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of cumulative levels of adrenal androgens and related placental

function.

Developmental processes may underlie the large proportion of

unexplained stillbirths in humans. Stillbirth is characterized as a

multifactorial outcome with various risk factors contributing in

large and small ways to an overall risk profile that varies widely

across populations. Common maternal predictors of stillbirth in

high-income countries include prepregnancy obesity, diabetes,

chronic hypertension, infection, smoking, increasing maternal age,

and lack of prenatal care [59]. In low-income countries, maternal

infectious disease is the major identifiable risk factor [60]. Nearly

45% of all stillbirths are thought to be preventable through the

modification of risk phenotypes (diabetes control, weight loss,

smoking cessation, prenatal care, infection protection, etc.) [61].

Given that this leaves the majority of stillbirths unaccounted for, it

is clear that not all risk factors have been identified. We argue that

a consideration of the developmental experience of the mother

may help close this gap. In our study, litter size alone explains 18%

of the variance in stillbirths (p,0.001), indicating that considering

birth history could add substantial power to current models of

human stillbirth.

There are potential limitations of our study. First, though the

marmoset is an anthropoid primate with many similarities to

humans, the fact that it produces multiples as a matter of course

differentiates its reproductive physiology from that of the human,

typically a producer of singletons. The genetic mechanisms of litter

size in marmosets are beginning to be elucidated, with potential

for understanding multiple births of both natural and assisted

origin in humans [62]. Since the etiology of multiple births is likely

to differ between humans and marmosets, the marmoset model is

possible better viewed as one of intrauterine nutrient restriction

due to natural variation in litter size, as opposed to an analog for

human multiples. Second, since this was a retrospective study of

demographic records, the extant coding system did not clearly

differentiate early pregnancy loss from sensu stricto stillbirth (the loss

of a fetus at a developmental stage equivalent to 28 weeks of

human gestation) so that losses span both the embryonic and fetal

periods. In our planned prospective studies, specific temporal

categories of loss will be employed. A third consideration is the

impact of secular trends in birth weight, litter size, and adult

weight on reproductive parameters. Individuals are being born at

greater weights into larger litters and growing into larger adults

than they were during the early years of the colony. The

differential effects of litter size and birth weight reported here are

independent of cohort effects, suggesting they are robust

phenomena unaffected by secular trends; this strengthens the

observation that developmental programming operates across a

range of birth weights. Finally, our focus is on the influence of a

female’s own early life characteristics on her adult reproductive

function. The influence of the female’s mate was not considered in

this study. Although paternal contributions such as age, sperm

quality, and parental care are important to reproductive success

and fetal outcomes, they were beyond the scope of the current

study. Future analyses of such contributions and their impacts are

planned.

In summary, our data overall clearly show that fetal develop-

ment has a tremendous impact on adult reproductive function:

triplets lost three times as many fetuses as did twins. A female

common marmoset monkey’s own litter size at birth – a phenotype

reflective of a nutritionally or otherwise stressed fetal environment

– acts on her ability to successfully gestate fetuses to term, perhaps

via the development of the HPO axis and reproductive tract. This

may be due to a combination of changes in nutritional allocation

and prenatal androgen exposure, both of which may alter

developmental pathways. We suggest there are specific develop-

mental mechanisms that entrain reproductive phenotypes and life

history schedules across generations, providing a novel way of

framing life history plasticity and evolution in litter-bearing

mammals. While there are obvious applications of our work to

life history studies of litter size and the physiology of multiple

pregnancies, the broader implications of our marmoset model

transcend these phenomena, situated in the ability to model a

naturally-occurring ‘‘developmental programming’’ or ‘‘growth-

impaired’’ phenotype (triplets) compared to a ‘‘normal’’ or

‘‘control’’ phenotype (twins). Our findings provide strong evidence

that a full understanding of mammalian life history, reproductive

biology, and pregnancy outcomes requires a developmental

foundation.
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