
Texas A&M University-San Antonio Texas A&M University-San Antonio

Digital Commons @ Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio

Computer Science Faculty Publications College of Business

2012

Measuring Defect Datasets Sensitivity to Attributes Variation Measuring Defect Datasets Sensitivity to Attributes Variation

Izzat M. Alsmadi
Texas A&M University-San Antonio, ialsmadi@tamusa.edu

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Alsmadi, Izzat M., "Measuring Defect Datasets Sensitivity to Attributes Variation" (2012). Computer
Science Faculty Publications. 18.
https://digitalcommons.tamusa.edu/computer_faculty/18

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please
contact deirdre.mcdonald@tamusa.edu.

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/18?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

63

Measuring Defect Datasets Sensitivity to Attributes Variation

Izzat Alsmadi

Computer Information Systems Department
Yarmouk University, Irbid, Jordan

ialsmadi@yu.edu.jo

 Abstract

The study of the correlation between software project and product attributes and its
modules quality status (faulty or not) is the subject of several research papers in the software
testing and maintenance fields. In this paper, a tool is built to change the values of software
data sets’ attributes and study the impact of this change on the modules’ defect status. The
goal is to find those specific attributes that highly correlate with the module defect attribute.
 An algorithm is developed to automatically predict the module defect status based on the
values of the module attributes and based on their change from reference or initial values.
For each attribute of those software projects, results can show when such attribute can be, if
any, a major player in deciding the defect status of the project or a specific module.

 Results showed consistent, and in some cases better, results in comparison with most
surveyed defect prediction algorithms. Results showed also that this can be a very powerful

method to understand each attribute individual impact, if any, to the module quality status
and how it can be improved.

 Keywords: Software metrics, software mutation, software metrics, and software
testing.

1. Introduction

The main goal of research projects in software testing is to first find techniques to

automate software testing activities and second to improve the ability of the generated test

cases to find unique defects and hence increase the overall coverage and quality. Coverage

can be measured based on one or more attributes or concerns of the software code,

requirements or design. This may include: path, statement, decisions, etc. coverage.

Software datasets include information about historical software projects. In software

repositories, those datasets are usually collected based on a focus concern (e.g. cost

estimation of defect prediction datasets). Attributes that are collected depend on the focus or
the concern of those datasets. Each record in the dataset represents a particular module or

instance. Collectors of those datasets try to include attributes that can help researchers

understand the attributes that may impact the results of the software module or instance. Each

module usually has an attribute called: class. The class attribute is the goal of the module. For

example, in defect datasets, the class for each module is either defect or not (usually a

Boolean attribute to indicate whether this particular module was defective or not during its
usage).

The general assumption in studying correlations in defect datasets is that a module that is

faulty should be distinguished from the other module(s) that are not by one or more attributes

in the project or the product. Usually, it is assumed that data sets’ collectors gathered all

relevant information correctly. If some important attributes were not collected, this may

impact the developed algorithms’ ability to predict correctly what happened on those

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

64

modules. Similarly, if attribute values were not accurate, or were relative or subjective, this

may also risk the validity of any proposed prediction algorithm.

Some attributes that are related to the development process, the developers’ characteristics,
the business and the environment can be subjective and hence can be hard to gather or

quantify. However, it is assumed that correlation can be made from the available information

and attributes. It is also assumed that those attributes are correctly measured and collected.

Another constraint is that those datasets usually come from different domains. Domain related

attributes are not included in those datasets. In some cases, those attributes may have a higher

impact on the predicted class relative to those known attributes.

Correlation describes the strength of a link or a connection between two or more attributes.

If two attributes are mutually correlated, then any change in one attribute, will cause a change

in the other attribute. It is used in statistics and several other fields to study the degree of

cohesion or connectedness between two or more attributes. Correlation coefficients can range

from -1.00 to +1.00. The value of -1.00 represents a perfect negative correlation while a value

of +1.00 represents a perfect positive correlation. A value of 0.00 represents a lack of

correlation between the two evaluated attributes.
In a high positive correlation, if we randomly select two samples from a dataset and

evaluate those two related attributes, then if the first attribute is increasing from sample A to

B then the second attribute will also always be increasing and vice versa. On the other hand,

100 % negative correlation means that those two attributes are always out of synch where if

the first attribute increases then the second attribute will always decrease and vice versa. In
the middle of the correlation line, the number zero means that there is no correlation at all

 between those two attributes and that we can’t make sense of any type of relation or
correlation between the two attributes. In reality, attributes will fall between +1 and -1 where

there is some weak or strong positive or negative correlation between the two attributes.

There are similarities between correlation methods and data mining techniques as usually the
process of classification, prediction and association in data mining will also try to look for

relations between the different attributes and the goal attribute (i.e. the class attribute). In

software fault prediction, the class is the type of the module whether it is faulty or not. In

software cost estimation, the class can be the project duration, size, cost, complexity, etc.

Typically, in correlation, the process compares two value attributes (also called nominal

attributes). However, in this paper, we are trying to evaluate correlation between the
numerical attributes in the datasets and the class attribute (i.e. a faulty or not faulty module)

which is a categorical variable.

Sensitivity is a term used in prediction and statistics to indicate the percentage of TP (i.e.

True Positive classes, classes that were defective and predicted as predictive) relative to the

total of TP and FN (False Negative, which means that the class is not defective and is
correctly predicted as not defective):

Sensitivity = (TP /(TP+FN)) -----------------

The sensitivity metric indicates the large variation between the different datasets and the

ability of the algorithm on correctly predicting the condition in cases it is really present. It is

the probability that a test is positive. However, in this paper, by sensitivity, indicates studying

the variation in value of the dataset attributes and evaluate its impact on the module class. The

rest of paper is organized as the following: The next section shows relevant related papers.

Later on, goals and approaches section is presented to demonstrate the technique used to

mutate dataset attributes along with results and statistics. The last section summarizes

summary and possible future work.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

65

2. Related Works

Several papers are presented about software fault prediction based on studying defect

datasets. Kagdy et al presented a comprehensive literature survey on approaches for

Mining Software Repositories (MSR) in the context of software evolution processes [1].

When developing a defect predictor, the probability of each class is calculated, given

the attributes extracted from a module, such as Halstead and McCabe attributes (i.e.

attributes that are relevant to predict faulty modules). The module will then be

classified according to the possibility with high probability. Menzies et al In [2],

predictors with Naïve Bayes (NB) are developed for fault characteristics. Olivier et al.

have used the Ant Colony Optimization (ACO) algorithm, and the Max-Min Ant

System to develop the AntMiner+ model that classifies the dataset records into either

faulty or non-faulty modules [3]. In [2], Menzies et al used Receiver Operating

Characteristic (ROC) as a predictor evaluator. Similar to this paper, the paper evaluated

prediction based on static code attributes. In this paper, we used ROC and several other

prediction evaluators to evaluate the quality of the proposed prediction algorithms.

A group of researchers conducted manual software reviews to find defective

modules. They found that approximately 60 percent of defects can be detected manually

[4]. Raffo found that the accuracy of correctly classified instances in defect detection of

industrial review methods is relatively small [5].

Ostrand et al designed a scheme to evaluate the effectiveness of the current and
proposed software development, validation, and maintenance techniques [6]. The

scheme attempts to identify the fault characteristics in several areas with several

possible values to describe the fault. Later on, same authors worked in the same field to

describe the use of fault data from successive releases of commercial systems [7]. They

presented some correlations between module size and fault-proneness and the

relationships between pre- and post-release faults in modules.

Andersson et al [8] conducted a replicated study of an earlier one by Fenton et al [9]

to study and correlate fault distribution on complex software. Their studies made some

indications that some faults may not be always correlated to attributes. They may be

due to a thorough process of testing and evaluation that help exposing such defects.

Results showed also that majority of faults usually exist in a small number of modules.

Size of the modules may not be always directly proportional to the number of faults.

Fenton et al [9] showed that that static code attributes can never accurately be a

certain indicator of the presence or absence of a fault. However, they are useful as

probabilistic statements that the frequency of faults tends to increase in code modules

that trigger the predictor.

3. Methodology

In order to study the relations between dataset attributes and the dataset class (i.e.

whether the module is faulty or not), a method is developed to measure the correlation

between each attribute and the module class. Several datasets are selected from

PROMISE repository defect prediction section (i.e. http://promisedata.org/?cat=4).

Table 1 shows a summary of the tested datasets.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

66

Table 1. The Details of the Experimental Data Sets used in this Paper

Dataset NO of records No of attributes No of Defects Def %

JM1 10884 22 2106 20

AR3 63 30 8 12.7

40 preprocessed 273 9 113 41.3

AR4 108 30 20 18.7

AR5 35 30 8 22.22

AR6 101 30 15 14.85
Datatrieve 129 9 11 8.5

It is noticed that prediction accuracy can be divided into two parts: Prediction

accuracy for the classes of the value “correct” i.e predicting accurately that the
defective class is defective and prediction accuracy for the classes of the value “false or

incorrect” where the instance or the module is not faulty. Those are usually referred to
as: True Positive (TP) and True Negative (TP) respectively. However, it is noticed that
a good TP predictor is usually a week TN predictor. As a result, it is also noticed that in

many prediction algorithms proposed in literature, considering an algorithm accuracy

based on TP only is deceptive as high TP will often cause a large percent of false

warning or alarms (i.e. FN).

In this research, a correlation factor is built from all the dataset records based on

simple algebraic algorithms that calculate the following metrics for each attr ibute:

 Average: The value calculates the overall average for the selected attribute (i.e.

from all instances).

 AverageTrue: This metric calculates the average values for the selected attribute

for all those instance in which the class (i.e. the state of the module whether

defective or not) is true.

 AverageFalse: Similar to the previous one, the metric calculates the average of

all instances which have the class as false.

 Total: Calculates the summation of all attribute values from all instances.

 TotalTrue: Calculates the total for the selected attribute in which the class is

true.

 TotalFalse: Calculates the total for the selected attribute in which the class is

false.

 CountTrue: This metric calculate the total number of instances in which the

class is true. This metric is fixed for all dataset attributes.

 CountFalse. It calculates the total number of instances in which the class is

false. This metric is fixed for all dataset attributes.

Based on those previous metrics, a correlation factor is then developed for each

attribute of the dataset to show the correlation between the attribute and the module

class.

A thorough statistical investigation for all datasets is developed to produce prediction

metrics based on the best combination of the previously described metrics that are
gathered from the dataset and all attributes.

A program is developed to first collect simple statistical metrics for each attribute

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

67

(i.e. values total, max, min, average, t otal, count) in addition to the previously described

metrics. Those are calculated two times for each attribute, onetime when the class is

true and another time when the class is false. Based on these statistical metrics, an

initial correlation factor is developed for each attribute in e very selected dataset.

Distance similarity metrics (e.g. Euclidian, Cosine, etc.) are then used to find the best

value that represent all modules for the evaluated datasets. The simplest effective

method of prediction applied is reading each attribute value and measure its Euclidean

distance from the average of the false (i.e. the average of the attribute values in which

the class is false) and the average from true. If the value is closer to the true average,

the class is predicted as true and vice versa.

Each attribute will have two correlation factors: First, TPCorr. This is a correlation

factor that indicates the percentage of true positive classes that were successfully

predicted using this attribute. Second, TNCorr is another metric collected for every

attribute to indicate its prediction accuracy in predicting true negative classes. In the

final stage, two attributes are selected from each dataset to predict its classes. Those

attributes have the highest TPCorr and TNCorr values. Table 2 shows an example of the
attribute correlation for one of the tes ted datasets (JM1). As mentioned earlier and can

be seen in Table 3, a good TN predictor is usually a weak TP predictor.

Table 2. JM1 Dataset Attributes Prediction

Attribute TN Prediction TP Prediction

t numeric 0.77 0.028

e numeric 0.77 0.028

locCodeAndComment numeric 0.727 0.041

lOComment numeric 0.706 0.055

v numeric 0.718 0.0586

b numeric 0.718 0.0586

ev(g) numeric 0.674 0.063

total_Op numeric 0.698 0.064

v(g) numeric 0.704 0.0648

n numeric 0.696 0.065

iv(g) numeric 0.703 0.065

total_Opnd numeric 0.697 0.065
lOCode numeric 0.695 0.0666

branchCount numeric 0.692 0.0685

lOBlank numeric 0.683 0.071

loc numeric 0.703 0.0759

uniq_Opnd numeric 0.662 0.078

d numeric 0.609 0.084

i numeric 0.626 0.085

uniq_Op numeric 0.516 0.107

l numeric 0.316 0.155

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

68

Table 3 below shows the summary of metrics results based on TP and TN correlation

calculations. For each dataset, two attributes are selected. Those are the ones that show

the highest TP and TN values. The Table below shows the prediction metrics for the

statistical algorithm proposed. It shows significant improvement over our previous

proposed method and over several research surveyed methods. In some odd cases such

as the third dataset where PF is 100 %, this means that the system can detect all true

faulty modules correctly; however, it has a very high amount of false alarms. We were

able to modify this situation through selecting other alternative attributes for those

selected in this experiment. In each dataset, one true and one false representatives are

selected for the evaluation. If both are true the class is predicted as true, if both are

false, the class is sel ected as false. However, if there is a tie, we decided for most

datasets to give the tie to the true class (i.e. faulty) as they are usually few. For those

datasets that show PD and PF as 1, giving the equality to the false section will reverse

the situation and TP zero and FP zero (instead of TN and FN).

Table 3. ROC Metrics for all Tested Datasets

Data Set PD PF Precision Accuracy Sensitivity

4_final 0.84 0.45 0.63 0.69 0.84

AR3 1 0.82 0.16 0.29 1

Retr. 1 1 0.91 0.91 1

Jm1 0.55 0.36 0.27 0.62 0.55

AR6 0.93 0.73 0.18 0.37 0.93
AR4 0.95 0.74 0.27 0.38 0.95

AR5 1 0.5 0.36 0.61 1

Tables 3 and 4 show samples from AR4 dataset in studying the TN correlation

between attributes and the class of their module. This correlation is measured while

changing the value of the attribute. It can be noticed that there are columns or attributes

that are not affected through this specific addition on contrary to the others. This can

help us understand the sensitivity of those attributes relative to the class value.

Table 4. Attributes Correlation in Response to Increasing their Values

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

69

Looking at the two tables, there are several comments to notice.

1. The tables show the TN correlation between the attributes and the modules

classes. This is calculated based on the percentage of correct predictions of the

correct modules (i.e. predicted non defective and it is non defective). TP

predictions are calculated for all datasets but are not shown due to paper size
limitations. TP results are usually different and in most cases opposite to those

of TN. A high TN value indicates a high correlation and high ability of

prediction of the attribute of correct modules.

2. The first columns in the two tables show the value of TN when taking the actual

attribute value. The small variation in some of the attributes is due to the fact

that the process of calculating TN correlation is statistical and different rounds

may produce slightly different results.

3. In the studied attributes, there are some attributes that showed no sensitivity or

response to increasing or decreasing their values (e.g. total operators_numeric).

For this specific attribute (total operators numeric), its correlation value is high:

0.7614. On the other hand, other attributes such as: code_and_comment_loc

numeric show a very high sensitivity or instability through varying its value up

and down. It should be mentioned that adding or decreasing 1,2,3, etc maybe the

reason that some attributes are sensitive or not. It is noticed that some attributes

require higher values in magnitude to be affected.

4. For some attributes, they are either affected by either increasing or decreasing
the value of their attributes.

Table 5. Attributes Correlation in Response to Decreasing their Values

All other datasets in the studied datasets were evaluated and results allowed us to
understand how to optimize attributes ’ values through setting goals for typical or good

quality software products.

International Journal of Software Engineering and Its Applications

Vol. 6, No. 2, April, 2012

70

4. Conclusion

In this paper, the study focused on studying the effect of changing the values of attributes on

the class module to see their impact on the defect status of the module. Those values are then

changed up and down to measure the sensitivity of the defect attribute with those changes. An

algorithm is developed to evaluate the modules’ correlation with all data sets’ attributes. The

approach can help us understand the attributes that are highly relevant in impacting the module

defect status. The research divides attributes class prediction into TN and TP predictions based

on defective and non-defective classes. In future, a thorough investigation will be developed

through a large number of datasets. The power of this approach is that though which we can

deeply understand variations in the software product attributes that can increase or decrease its

overall quality.

References

[1] H. Kagdi, M. L. Collard and J. I. Maletic,“A survey and taxonomy of approaches for mining software
repositories in the context of software evolution”, Journal of Software Maintenance And Evolution: Research
And Practice, (2007).

[2] T. Menzies, J. Greenwald and A. Frank,“Data Mining Static Code Attributes to Learn Defect Predictors",
IEEE Transactions on Software Engineering, vol. 33, No. 1, (2007) January.

[3] O. Vanderuys, D. M. BartBaesens, C. Mues, M. De Backer and R. Haesen,“Mining Software Repositories

for comprehensible Software Fault Prediction Models”, The Journal of Systems and Software 81,(2008), pp.
823-839.

[4] F. Shull, V. B. ad B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero and M.

Zelkowitz, “What we have learned about fighting defects,” in Proceedings of 8th International Software
Metrics Symposium, Ottawa, Canada, (2002), pp. 249 – 258, available from <http: //fc-
md.umd.edu/fcmd/Papers/shull defects.ps>.

[5] T. Menzies, D. Raffo, S. on Setamanit, Y. Huand S. Tootoonian, “Model- based tests of truisms,” in
Proceedings of IEEE ASE 2002, (2002).

[6] T. J. Ostrand and E. J. Weyuker, “Collecting and categorizing software error data in an industrial
environment”, The Journal of Systems and Software,(1984), pp. 289-300.

[7] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large industrial software system”, In
Proceedings of the 2002 ACM SIGSOFT International Symposium on Software Testing and Analysis,
(2002), pp. 55-64. ACM Press.

[8] C. Andersson and P. Runeson, “A replicated quantitative analysis of fault distributions in complex software
systems”, IEEE transactions on software engineering, Vol. 33, No. 5, (2007) .

[9] N. E. Fenton and N. Ohlsson,“Quantitative analysis of faults and failures in a complex software system”,
IEEE transactions on software engineering, vol. 26, No. 8, (2000) , pp. 797-814.

Authors

Izzat Alsmadi

Izzat Mahmoud Alsmadi is an assistant professor in the department of

computer information systems at Yarmouk University in Jordan. He

obtained his Ph.D degree in software engineering from NDSU (USA), his

second master in software engineering from NDSU (USA) and his first

master in CIS from University of Phoenix (USA). He had B.sc degree in

telecommunication engineering from Mutah University in Jordan. He

has several published books, journals and conference articles largely in

software engineering and information retrieval fields.

	Measuring Defect Datasets Sensitivity to Attributes Variation
	Repository Citation

	/var/tmp/StampPDF/pGx_X5ea0U/tmp.1568342177.pdf.ke3gn

