
Texas A&M University-San Antonio Texas A&M University-San Antonio

Digital Commons @ Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio

Computer Science Faculty Publications College of Business

2014

Issues Related to the Detection of Source Code Plagiarism in Issues Related to the Detection of Source Code Plagiarism in

Students Assignments Students Assignments

Izzat M. Alsmadi
Texas A&M University-San Antonio, ialsmadi@tamusa.edu

I. AlHami

S. Kazakzeh

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Alsmadi, Izzat M.; AlHami, I.; and Kazakzeh, S., "Issues Related to the Detection of Source Code
Plagiarism in Students Assignments" (2014). Computer Science Faculty Publications. 17.
https://digitalcommons.tamusa.edu/computer_faculty/17

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please
contact deirdre.mcdonald@tamusa.edu.

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/17?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014), pp.23-34

http://dx.doi.org/10.14257/ijseia.2014.8.4.03

ISSN: 1738-9984 IJSEIA
Copyright ⓒ 2014 SERSC

Issues Related to the Detection of Source Code Plagiarism in

Students Assignments

Izzat Alsmadi
1
, Ikdam AlHami

2
 and Saif Kazakzeh

3

1
Information systems Department, Prince Sultan University

2, 3
 Computer science Department, Yarmouk University

1
 ialsmadi@cis.psu.edu.sa,

2
 ikdam@yahoo.com,

3
 xsaifahmadx@gmail.com

Abstract

Detecting similarity or plagiarism in the academic research publications, source code, etc.

has been a long time complex and time consuming task. Several algorithms, tools and

websites exist that try to find plagiarism or possible plagiarism in those human creative

products. In this paper we used source code plagiarism detection tools to assess the level of

plagiarism in source codes. We also investigated issues related to accuracy and challenges in

detecting possible plagiarism in students’ assignments. In a second study, we evaluated some

tools against detecting possible plagiarism in research papers. Results showed that such

process or decision is not binary to make and that subjectivity is high. In addition, there is a

need to tune plagiarism detection tools to give criticality or weights by users of those tools to

categorize and classify different levels of seriousness for committing plagiarism.

Keywords: Plagiarism, Code similarity, Documents similarity, string search, information

retrieval, and search engines.

1. Introduction

In the academic field, one of the major serious problems is the plagiarism problem. There

are two major areas of possible plagiarism in the academia. Those include plagiarism in

research papers, projects and publications. It also includes plagiarism that is especially

applicable for students in the computer and information technology majors. This is the

plagiarism in writing code or programs assigned by their instructors. Further, code plagiarism

may take several possible forms. In some cases, students in the same class may copy

assignments from each other. They may also get their code assignment from external public

resources, especially the Internet. In some places, local companies may offer helping students

partially or completely in those code projects. The Internet also includes several websites in

which students can submit their code assignments and get help from experts through the web.

In some cases, this may be offered for financial compensations, or it can be offered as part of

blogs or websites of experts for free. This link:

(http://www.ics.heacademy.ac.uk/resources/assessment/plagiarism/onlinesites.html) that is

updated by University of Ulster contains a list of several websites that help students (or any

person or business for that matter) in their code assignments.

Teaching some computer major courses without tasks, assignments and experiments that

include programming is ineffective. On the other hand, instructors struggle to make sure that

their students actually performed the tasks themselves without a significant or complete help

from others. The Internet and the availability of many websites that can offer help makes it

harder for instructors to find possible plagiarism as they will not only look for possible

mailto:ialsmadi@cis.psu.edu.sa
mailto:ikdam@yahoo.com
mailto:xsaifahmadx@gmail.com

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

24 Copyright ⓒ 2014 SERSC

plagiarism among students in their course; they have to search through a vast number of

websites, blogs, posts, etc. It may be argued that instructors can solve this through asking for

new or different tasks all the time. This can be impossible and time consuming for instructors

in courses that are time consuming also in grading, looking for possible plagiarism, etc.

especially when the number of students in such classes is large.

To help instructors in the speed and the accuracy of detecting possible plagiarism, several

tools and websites are available: free, open source and commercial. In the following section,

we will describe some of those tools.

1.1. Tools and Techniques to Detect Code Similarity

There are several examples of source code plagiarism tools. Focus in this section will be

on: JPlag, SIM, and MOSS as a sample.

• JPlag

While it is not the first source code web-based plagiarism detection tool, nonetheless,

evaluations of the tool showed that it is reliable, available for free and easy to use in

comparison with many other similar tools (Prechelt et al., 2002 [1]). The paper of (Faidhi,

and Robinson 1987 [2]) discussed an earlier code plagiarism tool where the tool includes a

large set of metrics to compare among the different codes to judge possible plagiarism.

YAP (Yet another Plague) tool of (Wise 1992 [3]) discussed also a source code plagiarism

tool. Wise released several enhanced versions of the tool later on. YAP itself was an

enhancement of an earlier tool called (Plague). User of YAP is allowed to set the cut off

percentage to consider the occurrence of plagiarism in the code or not.

• SIM

This is a tool that is developed to detect code as well as text possible plagiarism, or even

DNA string comparison (Gitchell and Tran 1999 [4]). The tool is original developed to

compare C program codes. A similarity score algorithm is developed with a value between 0

and 1 based on the level of similarity between the subject codes.

• MOSS

This is also another popular free code plagiarism tool. It supports different operating

systems. The tool divided the code into several finger prints and matching or similarity is

evaluated based on the number of similar finger prints between the evaluated codes.

1.2. Techniques to Detect Documents Similarity

In this area, there are many methods to judge similarity between documents. A brute force

approach will compare the subject document with investigated documents word by word.

However, in most cases, such approach is time and resources’ consuming. In addition, such

approach can be easily fooled through editing a small number of words in the document. A

more effective approach depends or is based on metrics related to the documents such as the

number of statements, paragraphs, punctuation, etc. (Grier 1981 [5], Faidhi, and Robinson

1987 [2]). A similarity index is calculated to measure the amount of similarity between

documents based on those metrics. Comparing the approach of taking the document word by

word in comparison to statement or paragraph by graph for example can have several

contradicting tradeoffs. On one side, word by word comparison can minimize the effect of

changing one or a small number of words relative to the total document. However, this can be

time consuming and word to word document similarity may not necessarily means possible

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 25

plagiarism especially if the algorithm did not take the position of the words into

consideration. Documents’ similarity can be classified in different categories. In one

classification, they can be classified into: word based, keyword based, sentence based, etc.

Sentence or paragraph by paragraph approach is also affected by several variances such as the

difference in size between the compared documents and the amount of words edited in those

statements or paragraphs.

Hashing algorithms are also used to measure documents similarity. Hashing algorithms are

used originally in security to verify the integrity of an investigated disk drive and protected it

from being tampered. Hashing can be calculated for a word, a paragraph, a page, or a whole

document.

N-gram and Latent Semantic Analysis (LSA) approaches are also different algorithms used

in documents’ similarity. The main drive behind using N-gram in evaluating similarity

between documents is that similar words will have a high percentage of N-grams in common.

In most experiments, n is selected to be two or three. For example, using n-gram for the word

“software” and n to be 3, will give the following outputs: ##S, #SO, SOF, OFT, FTW, TWA,

WAR, SRE, RE#, and E## where # denotes a padding space. The number of possible bigrams

is given by the equation: n+m-1, where n is the number of possible characters in the word or

the string and m is the possible grams. In the previous example, n is 8, and m is 3 and hence

the number of bigrams is 10. Several text similarity applications such as: information

retrieval, natural language processing, OCR, spell checking, etc use n-gram in their text

similarity decisions.

1.3. Semantic Similarity

Measuring semantic is usually a harder task in comparison with measuring words’

similarity. In documents, semantic similarity between the two documents can be measured

based on a similarity index that measures the number of similar words based on several

possible algorithms. Statistical means such as vector space models can be also used to

measure the amount of correlation between the two subject documents. A topological

similarity method is usually used to measure similarities between ontological concepts.

Examples of such methods include: edge-based, node-based, pair-wise, and group-wise

techniques. In terms of tools, there are some popular tools that are experimented for semantic

similarity. Examples of such tools include: Wordnet, MSR, UMLS, SenseBot, SenseLearner,

GWSD, and FrameNet. Wordnet uses an extensive word-definition library or dictionary that

can be queried for each word in the subject document.

2. Literature Review

2.1. Code Plagiarism

In this section, we will describe some papers related to plagiarism in general. Then in the

second section, we will describe some of the papers dedicated to code plagiarism evaluation.

Manber presented approximate index concept to measure similarity between strings in

different documents (Manber 1994 [6]). A tool called “Sif” is developed to find similar files

in a large file system. He proposed the concept of approximate index to measure the similarity

of character strings between documents, which was adopted later by many similar systems.

(Manber 1994 [6]) described using a finger print (or what they called anchors) and a fixed

number of characters as a baseline to search for plagiarism. In a similar approach and rather

than considering a fixed number of characters where changing one character may affect the

whole comparison, we decided to select 4 words as the baseline. An initial method is

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

26 Copyright ⓒ 2014 SERSC

developed to calculate the most frequent words in a paper and use them as an anchor. This is

of course after removing all generic words, prepositions, and any other words that are

expected to be seen in any paper (i.e., abstract, keywords, “this paper”, etc). For each

occurrence of those frequent words, the algorithm will take 4 words starting from frequent

words, and then look in all subject documents for possible matches.

We compared using the most frequent words as anchors in comparison to all documents

words. Comparison will be based on two criteria: performance and plagiarism detection. If

sufficient number of baselines (i.e., 4-words statements are common to two files (under

comparison) then this is a good enough evidence that the two files are similar in some way.

The tool we developed in this paper uses several different search algorithms. The first one

searches for possible similar documents for the subject document through a directory of files.

The other algorithm searches for similar documents through the Internet. Calculating

similarity between documents does not require in many cases similarity in cosmetic attributes

such as the file type, size, number of words, etc. He defined a checksum algorithm called

“fingerprint” that is based on defining keywords in each document and parse a certain amount

of characters starting from those keywords to calculate similarity. In those checksum, anchor

words are used from which a certain number of characters is selected and compared among

documents. Anchors are created through analyzing text from many different files and

selecting a fixed set of representative strings. In somewhat similar approach, we used the

most frequent words in the subject word to be our anchors from which the algorithm will start

looking for possible plagiarism or sentences’ match.

Some papers tried to tackle the performance problem of finding plagiarism in documents

through using indexing (Mozgovoy et al., 2005 [7]). Such concept is utilized also in search

engines for fast document retrieval.

Detecting possible plagiarism in source code is another relevant subject to this paper. In

principle, searching for similarities between two code projects is similar to that of documents.

However, some cosmetic changes to a source code (e.g., changing all variables, methods,

classes’ etc., names) can make the new code look different for a code plagiarism tool while in

reality it is similar or identical. Based on this assumption (Baker 1993 [8]) defined two source

codes to be similar if one can be obtained from the other by changing parameter, method,

attributes, or classes’ names. He presented several algorithms to identify similar source codes.

We will be contrasting our findings with those obtained using the shingle and finger print

techniques (Manber 1994 [6], and Broder et al., 1997 [9]). This technique depends on

reducing each document to a series of numeric codes, such as hash codes, based on sequences

of words. In the original paper, the authors suggested making each hash code of a group of 10

adjacent words, and moving the window by one word to create the next hash code. They then

eliminate duplicates and, to reduce the number of values, save only those divisible by 25. If

this is still too many, they save only the 400 smallest values. The advantage of using shingles

to compare documents is that a simple set membership between two tables of integers can be

computed very rapidly. Documents that match in all shingles are assumed to be identical and

those that match nearly all shingles are closely related.

For code plagiarism, several papers are available focusing in this issue. Some papers

discuss the development and evaluation of code plagiarism tools such as those mentioned

earlier. Other papers focus on the experience of dealing with students’ code plagiarism

evaluation.

Several papers tried to compare between different source code analyses tools (e.g., Jun-

Peng et al 2003 [10], Maurer et al., 2006 [11], Kustanto and Liem 2009 [12], Hage et al.,

2010 [13], etc.). There are several popular tools such as those described earlier that were the

focus of such surveys or comparisons. There are two major criteria upon which such tools are

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 27

compared. Those are accuracy and speed or performance. In terms of accuracy, metrics are

used to measure the ability of those tools to successfully or correctly detect the occurrence of

plagiarism. In such scenarios, failures can occur when such tools assume plagiarism while it’s

not, or the opposite. Challenges arise in cases where it is difficult to judge plagiarism

occurrence (e.g., semantic plagiarism). In terms of performance, it is important for such tools

to complete the process in a timely manner. Testing a code project against several other

projects, line by line can take a significantly long time.

2.2. Plagiarism in Research Publications

A lot of works are conducted on the plagiarism process, tools, evaluations, etc. We will list

only a sample of those in this section.

El Tahir Ali et al., 2011 [14] presented a survey of the most important plagiarism detection

methods. They classified the detection tools based on the used methods to four classes:

natural language text detection, index structure, external and cluster-based plagiarism

detection tools. Natural language text copy detection is used for years and includes three

methods. First is the grammar-based method which is appropriate for catching the text

plagiarized without modifications. Second method is the semantic-based method which can

work properly for non-partial plagiarized text as it is based on the vector space model.

Grammar-semantic hybrid is the third method which is suitable with partial plagiarized text

that also includes modifications. Ferret is an example on the use of a specific index structure

that is based on the words trigrams. The external plagiarism detection method uses external

corpus collections in order to compare any given document with it. The last effective method

is clustering, which is used widely for text summarization and in reducing the search time.

Fingerprint-based plagiarism is the main method that relies on clustering.

Most of the proposed plagiarism detection tools are not specific for a particular language

despite the fact that the majority are developed for English language in the first place.

Alzahrani et al., 2009 have produced an Arabic plagiarized detection (APD) tool especially

for working with Arabic language. Their tool detects and highlights the plagiarized text, and it

was experimented and integrated within an e-learning system. Additionally, another Arabic

plagiarism detection tool (APlag) was presented by Menai and Bagais 2011. APlag depends

on fingerprints methods, and other characteristics of Arabic language. It has been

experimented and the results present a better effectiveness compared to APD.

A recently published study by Kakkonen and Myller 2012 claimed that their novel

plagiarism detection tool (AntiPlag) has performed better (with 95% accuracy) compared to

four of the well-known commercial tools (i.e., Turnitin, Eve2, SafeAssignment and

Plagiarism-Finder). AntiPlag works with both local collections and web-based plagiarism

detection. In general, there are many factors that should be considered when evaluating a

plagiarism detection tools such as: accuracy, performance, and false alarm reduction, etc.

Another direction of using plagiarism detection tools is presented by Graven and

MacKinnon 2007. Authors have studied the flexibility and richness of two advanced

plagiarism detection tools (Turnitin and VALT/VAST). They wanted to address whether

those tools provide a good enough detection to detect commonalities between texts that are

not actually plagiarized but yet should be similar. Their evaluation depends on the idea of

using such tools in an automated assessment process within a virtual learning environment

(VLE). In the project, a student should create a narrative in order to pass to next levels in the

learning process. Narratives are about conceptual elements that are defined in the project. The

next step is decided, according to a predefined narrative sample as a solution, and depending

on the plagiarism detection tools. Similarities should be detected if the student wrote a close

solution to the predefined one. In this way an automatic assessment can be achieved to some

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

28 Copyright ⓒ 2014 SERSC

extent by using those tools. In some cases, there were a number of strong similarities in form

of semantic or separated words. These results provide a proof that those tools still not useful

or immature for developing automated assessment techniques or evaluation. Authors raised

questions on how much can those tools detect smart plagiarism attempts, not only directly

copying a text.

3. Experiments and Analysis

In an earlier paper (Alhami and Alsmadi 2011), we described our implementation of a tool

for automatic grading for code homework. The tool is developed based on concept extraction

to automatically grade each question in comparison with a typical answer for that question.

Rather than looking for a specific answer, the typical answer, which is the baseline for each

question that the grading process depends on, include keywords that are expected to exist in

the answer.

This includes using JPlag code plagiarism detection tool to evaluate possible code

plagiarism among students’ assignments gathered from actual submitted home-works. In

Plagiarism, the divided the levels of plagiarism into several levels based on the percentage of

similarity between the evaluated codes.

Following is a description of the evaluation experiment along with results analysis. Several

code assignments are submitted from students. Students were from 3 different sections.

 Task 1: First assignment for the first student section. Five students have submitted the

assignments. Results showed that there is no clear plagiarism among student

assignments and the percentage of similarity among all assignments in this section is

limited to between 0% - 10%.

 Task 2: First assignment for the second student section. Six students have submitted

the assignment. Two cases of plagiarism in the level: 40-50%, 17 cases between 10-

20 % and the rest are in the range of less than 10%. Table 1 shows a summary of

experiment for students’ assignments possible plagiarism in this section. The table

shows the similarity matrix among the different assignments that have a significant

level of similarity.

 Task 3: First assignment for the third student section. Two students have submitted

the assignment. Ranges of plagiarism are between 30 % and less. Table 2 shows a

summary of this task results.

 Task 4: Second assignment for the first student section. Six students have submitted

the assignment. Plagiarism levels vary between 60 % and below. This is an average

level of plagiarism where it can indicate that students are actually copying from each

other or from the same source. Table 3 shows a summary of those results.

 Task 5: Second assignment for the second student section. Eight students have

submitted this assignment. In this case, serious plagiarism occurred with levels higher

than 60 % (i.e., 64.8 and 99.7 %). Summary of results is shown in Table 4. The first

row represents a solid case of plagiarism between students (2009901087 and

2008901120).

 Task 6: Second assignment for the section three. Seven students have submitted this

assignment. So far, this is the most serious case of plagiarism with several almost

complete cases of plagiarism. Further, results showed that in some cases more than

two students are copying from other. Results are shown in Table 5.

 Task 7: Third assignment for the first student section. Six students submitted the

assignment. Table 6 shows the results with a medium level of plagiarism.

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 29

 Task 8: Third assignment for the second student section. Five students submitted this

assignment in section 2. Results indicate a significant level of plagiarism among all

students. This is somewhat a unique case in comparison to all previous assignments

or cases. Table 7 summarizes the results for Task 8.

 Task 9: Third assignment for the third student section. Twelve students have

submitted the assignment. Only 7 of those are displayed which showed possible

plagiarism. Results in this section showed a significant, even complete, levels of

plagiarism where some students are exactly using the code of others representing a

solid case of plagiarism. Table 8 shows a summary of Task 9 results.

 Task 10: Fourth assignment for the first student section. Eight students submitted the

assignments and results of five of them are showed for significant plagiarism. Results

showed significant levels of plagiarism among student codes. Table 9 shows a

summary of the results of Task 10.

 Task 11: Fourth assignment for the second student section. Only assignments of two

students are evaluated. Table 10 shows a summary of the results.

 Task 12: Fifth assignment for the first student section. Six of ten submitted

assignments are evaluated for possible plagiarism. There is a significant level of

plagiarism in some of those assignments in comparison to the others. Table 11 shows

a summary of the results.

Table 1. Assignment 1. Section 2: Results Summary

Table 2. Assignment 1. Section 3: Results Summary

Table 3. Assignment 2. Section 1: Results Summary

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

30 Copyright ⓒ 2014 SERSC

Table 4. Assignment 2. Section 2: Results Summary

Table 5. Assignment 2. Section 3: Results Summary

Table 6. Assignment 3. Section 1: Results Summary

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 31

Table 7. Assignment 3. Section 2: Results Summary

Table 8. Assignment 3. Section 3: Results Summary

Table 9. Assignment 4. Section 1: Results Summary

Table 10. Assignment 4. Section 2: Results Summary

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

32 Copyright ⓒ 2014 SERSC

Table 11. Assignment 4. Section 3: Results Summary

Upon manual review of the students assignments we found out that plagiarism detected by

the tool can be classified under the following categories:

1. In some cases, the plagiarism detection is (false alarm) where the tool by mistake

decided that some similar use of variable or method declarations is a possible

plagiarism. We know that in programming or code, there are some parts that can be

identical between all assignments and those are part of the programming language built-

in names that will be the same in all tasks if they are used.

2. On the other side, manual detection of students’ code assignments showed that some

students are clever in a since that they can mislead code plagiarism tools. This is as they

change variable and method names while in reality the majority of the code among the

different assignments is the same. However, such semantic type of plagiarism is still a

challenge for all types of plagiarism detection tools.

3. On the third level of manual code plagiarism observation, our observations showed that

code plagiarism tools that can be a useful effective tool for instructors for initial

location of possible high plagiarism levels. While some percentage of error in

plagiarism detection can be noticed, on the other hand, they are able to give initial

indicators of plagiarism especially in cases where such plagiarism is high and obvious.

Such task can be tedious and time consuming to perform manually.

4. Literature Evaluating Plagiarism in Research Papers

We have conducted a comparative study as a preliminary experiment. The study evaluated

three plagiarism detection tools (Plagiarisma, Dustball, and DupliCkecker) that are free and

web-based, Table 12. Based on a case study assembled for this purpose, tools are evaluated

and compared mainly in their ability to predict plagiarism occurrences and reducing false

alarms. Simple tests are conducted by preparing two different documents as test cases for the

tools. The tests revealed that Plagiarisma was the most reliable and accurate tool for

detection with issues only with performance of efficiency. Dustball and DupliChecker,

ranked second and third, respectively, and both of them have significant problems related to

the reliability of detecting or missing plagiarism cases.

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

Copyright ⓒ 2014 SERSC 33

Table 12. Plagiarism Detection Tools Characteristics and Features

 Plagiarisma Dustball DupliChecker

Website http://www.plagiaris

ma.net

http://www.dustball.com/

cs/plagiarism.checker/

http://www.duplichecker.

com

Provide a Premium

Membership

Yes Yes No

Provide Desktop

Software

Yes No No

Need Registration Yes No No. But, one can register

for free to do unlimited

searches per day

Ability To Upload

Files

Yes, for free and

premium users

Yes, only for premium

users

Yes

Possibility to create

PDF reports

Yes No No

Search Engines Google, Babylon,

Yahoo

Google Google, Yahoo, MSN [7]

Restrictions Characters per query;

max 5000 unless

user is registered (for

free). Some options

however are only

available for

premium users with

paid registrations.

A delay to start the

detection process for

non-premium users

Max 2000 words per

search, non-registered

users can do 3 searches

per day

5. Conclusion

In this paper, we evaluated the use of a code and research plagiarism detection tools for

possible detection of code plagiarism in students’ assignments. Such task can be tedious and

time consuming to be performed by instructors manually. In addition, there are two major

categories of possible source of plagiarism. Those are the Internet and students’ team mates.

In code plagiarism tools, there are two major criteria that are used to evaluate the performance

of such tools. Those are accuracy and speed or performance. In most cases, those two quality

attributes conflict with each other.

While code plagiarism evaluation for students’ assignments showed that code

plagiarism tools may show false alarms in many cases, however, results showed also

that such tools can be very helpful in initial investigation for possible plagiarism and

they can be very effective useful tools for instructors in this field.

References

[1] L. Prechelt, M. Guido and M. Phlippsen, “JPlag: Finding plagiarisms among a set of programs”, Journal of

Universal Computer Science, vol. 8, no. 11, (2000).

[2] J. Faidhi and S. K. Robinson, “An empirical approach for detecting program similarity within a university

programming environment”, Computers & Education, vol. 11, no. 1, (1987), pp. 11-19.

[3] M. Wise, “Detection of similarities in student programs: YAP’ing may be preferable to Plague’ing”. ACM

SIGSCE Bulletin (Proc. of 23rd SIGCSE Technical Symp.), vol. 24, no. 1, (1992), pp. 268-271.

[4] D. Gitchell and N. Tran, “Sim: a utility for detecting similarity in computer programs”, The proceedings of

the thirtieth SIGCSE technical symposium on Computer science education, New Orleans, Louisiana, United

States, (1999) March 24-28, pp. 266-270.

[5] S. Grier, “A tool that detects plagiarism in Pascal programs”, ACM SIGCSE Bulletin, vol. 13, no. 1, (1981),

pp. 15-20.

International Journal of Software Engineering and Its Applications
Vol.8, No.4 (2014)

34 Copyright ⓒ 2014 SERSC

[6] U. Manber, “Finding similar files in a large file system[C/OL]”, Proceedings of the Winter USENIX

Conference, (1994), (2006), pp. 1-10.

[7] M. Mozgovoy, K. Fredriksson, D. White, M. Joy and E. Sutinen, “Fast plagiarism detection system”, Lecture

Notes in Computer Science, vol. 3772, (2005), pp. 267-270.

[8] B. Baker, “A theory of parameterized patern matching: Algorithms and applications”, 25th Annual ACM

Symposium on Theory of Computing, San Diego, CA, (1993), pp. 71-80.

[9] A. Broder, Z. Glassman, C. Steven, M. Manasse and G. Zweig, “Syntactic Clustering of the Web”,

Proceedings of the Sixth WWW Conference. Santa Clara, CA, (1997).

[10] B. Jun-Peng, S. Jun-Yi, L. Xiao-Dong and S. Qin-Bao, “A Survey on Natural Language Text Copy

Detection”, Journal of Software, vol. 14, no. 10, (2003), pp. 1753-1760.

[11] H. Maurer, F. Kappe and B. Zaka, “Plagiarism, a survey”, Journal of universal computer science, vol. 12, no.

8, (2006).

[12] C. Kustanto and I. Liem, “Automatic Source Code Plagiarism Detection”, SNPD, (2009), pp. 481-486.

[13] J. Hage, P. Rademaker and N. Vugt, “A comparison of plagiarism detection tools, Technical Report”, UU-

CS-2010-015, Department of Information and Computing Sciences Utrecht University, Utrecht, The

Netherlands, (2010).

[14] A. El Tahir, H. Abdulla and V. Snasel, “Survey of Plagiarism Detection Methods”, 2011 Fifth Asia

Modelling Symposium, Manila, Philippines, May 24-May 26.

[15] I. Alhami and I. Alsmadi, “Automatic code homework grading based on concept extraction”, International

Journal of Software Engineering and Its Applications IJSEIA (http://www.sersc.org/journals/IJSEIA/), vol.

5, no. 4, (2011).

Authors

Izzat Alsmadi, is an associate professor in software engineering at

Prince Sultan University in Saudi Arabia. He has his master and phd in

software engineering from NDSU, USA. His research focus is mainly in

software engineering, metrics and testing

Ikdam AlHami, is a lecturer in the computer science department at

Yarmouk University in Jordan. His main research interests are in

programming and algorithms

Saif Kazakzeh, is a current master student in software engineering at

Yarmouk University in Jordan. His main research interests are in

software engineering and natural language processing.

	Issues Related to the Detection of Source Code Plagiarism in Students Assignments
	Repository Citation

	Journal Paper Format

