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ABSTRACT

Analyzing The System Features, Usability, And Performance Of A
Containerized Application On Cloud Computing Systems

August 2023

Anoop Abraham, B.S, Texas A&M – San Antonio

Graduate Thesis Chair: Dr. Jeong Yang

This study analyzed the system features, usability, and performance of three
serverless cloud computing platforms: Google Cloud’s Cloud Run, Amazon Web
Service’s App Runner, and Microsoft Azure’s Container Apps. The analysis was
conducted on a containerized mobile application designed to track real-time bus
locations for San Antonio public buses on specific routes and provide estimated
arrival times for selected bus stops. The study evaluated various system-related
features, including service configuration, pricing, and memory & CPU capacity,
along with performance metrics such as container latency, Distance Matrix API
response time, and CPU utilization for each service. Easy-to-use usability was
also evaluated by assessing the quality of documentation, a learning curve for be-
ginner users, and a scale-to-zero factor. The results of the analysis revealed that
Google’s Cloud Run demonstrated better performance and usability when com-
pared to AWS’s App Runner and Microsoft Azure’s Container Apps. Cloud Run
exhibited lower latency and faster response time for distance matrix queries.These
findings provide valuable insights for selecting an appropriate serverless cloud ser-
vice for similar containerized web applications.
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Introduction

1.1 Cloud Computing
In recent years, cloud computing has gained significant popularity as an efficient
and cost-effective approach to hosting applications. With its scalability, flexibil-
ity, and pay-per-use model, cloud computing offers businesses and organizations
a viable alternative to traditional on-premises hosting solutions. Cloud Comput-
ing services provide resources based on virtualization[1] and containerization[2].
Modern VM technologies allow a single server to be divided into multiple vir-
tual Containers [3, 4, 5, 6]. Cloud computing has become a critical component
of modern business operations, offering flexibility, scalability, and cost savings.
However, the reliability of cloud-based systems is a key concern for organizations
that rely on these systems for mission-critical applications. Service disruptions
and outages can have serious consequences, including lost revenue, damaged rep-
utation, and decreased productivity. Despite the importance of reliability, there
needs to be more comprehensive and unbiased information on the reliability of
different cloud service providers. Organizations need help making informed deci-
sions about which provider to choose, which can lead to costly service disruptions
and outages.

Figure 1.1: Serverless Cloud Computing.
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1.2 Serverless Cloud Computing
Serverless computing is a next-generation service delivery approach in which ser-
vice providers (SPs) offer just the resources required for the length of the re-
quested services’ execution[7, 8, 9]. Developers just need to build application
code and deliver it to containers controlled by a cloud service provider[9]. The
remainder will be handled by the cloud provider, who sets up the infrastructure
required to run the code and scales it up and down on demand. Fig.1.1 shows
a pictorial representation of a serverless cloud computing setup. Google Cloud,
one of the leading cloud providers in the market, offers several hosting options,
including serverless and server-based services.

1.3 Goals
This study aims to compare and evaluate serverless services offered by leading
cloud providers, specifically Google Cloud Run, AWS App Runner, and Azure
Container Apps, in terms of their features, pricing, scalability, performance, and
ease of use for deploying and managing containerized applications. The goal is
to determine the most suitable option for deploying a real-time vehicle location
tracking web application and to identify any trade-offs or limitations of each
service.

To conduct the comparative study, I will survey the existing literature on the
topic and review the features and capabilities of serverless cloud services on AWS,
GCP, and Azure. I will also conduct experiments to compare the performance
and usability of running sample applications on all three services. Furthermore,
I will investigate the support and documentation provided by each provider and
the provider’s reputation.

1.4 Contributions
In this thesis, a comparative analysis of different serverless services is presented,
including a performance and usability study. These findings can aid future au-
thors in discovering new research avenues for deploying a containerized applica-
tion on a serverless cloud platform. The main contributions of this thesis are:

• A comparative analysis of the Cloud Run, App Engine, and Compute En-
gine services from Google Cloud Platforms for deploying containerized web
applications with heavy use of Google Maps APIs.

• An overview of recent academic research related to serverless cloud com-
puting from 2015 to 2023.

• A comparative analysis of the serverless service features offered by Cloud
Run, App Runner, and Container Apps.

• A usability analysis of the serverless services offered by Cloud Run, App
Runner, and Container Apps based on their ease of use and suitability for
beginners in serverless computing.
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• A performance analysis to deploy a containerized Django web application
with heavy use of Google Maps APIs on the three serverless platforms:
Cloud Run, App Runner, and Container Apps.

• Suggestions on the best serverless service to deploy containerized web ap-
plications with heavy use of Google Maps APIs.

1.5 Thesis Outline
The rest of this document consists of the following:

• Chapter 2: In this section, a comparison is made between three Google
Cloud services - Cloud Run, App Engine, and Compute Engine - to deter-
mine their features and usability for deploying a containerized web appli-
cation.

• Chapter 3: Provides the comparison results for serverless services from
Google Cloud, Amazon Web Services, and Microsoft Azure.

• Conclusions: This section provides a summary of the research and results
discussed in the previous two sections, highlighting the key findings.

3



A Comparative Analysis of
Performance and Usability on
Serverless and Server Based
Google Cloud Services

This study compared the performance and usability of a containerized mo-bile-
web application on serverless and server-based services in Google Cloud. The
primary purpose of the application was to enable users to view the real-time
location of San Antonio VIA buses on specific bus routes and obtain estimated
arrival times for chosen bus stops when requested. The application was hosted
in Google Cloud’s serverless Cloud Run, App Engine, and server-based Compute
Engine, and its latency and throughput were measured to analyze its performance.
Google Cloud’s Monitoring services were used to measure various metrics, includ-
ing latency, throughput, and CPU utilization. Documentation and learning curve
were evaluated for usability. Comparative analysis of these three Google services
for hosting a containerized web application with heavy use of map-related APIs
will assist individuals in selecting the appropriate cloud service for a for a similar
type of application. The study results indicated that Cloud Run had the best
performance and usability compared to App Engine and Compute Engine. It had
the lowest latency of 47.24ms and highest throughput with sent and received rates
of 9.47k/s and 11.15k/s, respectively. Additionally, it had the lowest container
startup latency of 475.22ms and CPU utilization of 1%.

2.1 Introduction
The three most widely used cloud service offerings are IaaS, PaaS, and SaaS, also
known as cloud service models or cloud computing service models, as shown in
Fig.2.1. According to [10], IaaS, PaaS, and SaaS are not mutually exclusive and
are often used in combination. Many mid-sized businesses use multiple types,
and most large enterprises use all three.

Infrastructure as a Service (IaaS). IaaS is a cloud computing service model
that provides virtualized computing resources over the internet[10, 11]. It enables
customers to rent virtual machines, storage, and other computing resources on
a pay-per-use basis instead of investing in and maintaining their own physical
infrastructure. IaaS can be considered the original ’as a service’ offering, as ev-
ery leading cloud service provider, including AWS, Google Cloud, IBM Cloud,
and Microsoft Azure, initially offered some form of IaaS. The benefits of IaaS
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include higher availability, lower latency, improved performance, improved re-
sponsiveness, comprehensive security, and faster access to the latest technology
[10]. Examples of IaaS offerings include AWS Elastic Computing Cloud (EC2),
Microsoft Azure Virtual Machines, and Google Cloud Compute Engine.

Figure 2.1: Cloud Service Models (IaaS, PaaS, SaaS)[8]

Platform as a Service (PaaS). PaaS provides a platform for developers to cre-
ate and deploy applications without having to worry about the specific resources
such as memory and processor required by their applications[10, 12, 13]. Some
examples of PaaS offerings are AWS Elastic Beanstalk, Google App Engine, Mi-
crosoft Windows Azure, and Red Hat OpenShift on IBM Cloud[10, 12]. The
primary benefit of PaaS (Platform as a Service) is the ability to build, test, de-
ploy, run, update, and scale applications more efficiently and cost-effectively than
traditional on-premises solutions.

Software as a Service (SaaS). SaaS (Software as a Service) is a type of cloud
computing that enables users to access complete software applications through
a web browser, desktop client, or mobile app[13, 14]. The software and all its
infrastructure are hosted and managed by a SaaS vendor, which also manages all
upgrades, patches, and security. This eliminates the need for the user to manage
the infrastructure and software and enables them to access the application from
anywhere with an internet connection [10]. SaaS offers several benefits, includ-
ing minimal financial risk, easy scalability, and anytime/anywhere productivity.
Examples of SaaS are Gmail, Google Drive, Dropbox, Slack, WebEx, and Zoom.

This paper presents a comparative analysis of the performance and usability
of a containerized mobile-web application hosted on Google Cloud’s serverless
Cloud Run and App Engine and server-based Compute Engine. The study aims to
provide insights into the performance and usability of using serverless and server-
based Google services for hosting containerized applications and help individuals
choose the appropriate cloud service for their hosting needs.
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The rest of the paper is organized as follows: Section 2.2 summarizes some
of the recent works in the field of cloud computing and talks about the different
deployment models for cloud computing. Section 2.3 describes the three Google
services used in this paper for comparison; Section 2.4 talks about the research
methodology. Section 2.5 provides the analysis of the Google services explained
in section 2.3, and Section 2.6 concludes the paper.

2.2 Related Work
In recent years, there have been several studies and surveys on serverless comput-
ing. For example, Zaid Al-Ali et al. proposed extending the scope of serverless
computing beyond the currently limited framework to support a broader range
of programming paradigms [15]. Mingyu Wu et al. conducted a comprehensive
assessment of serverless computing, covering three areas: applications suited for
serverless computing, performance challenges, and security concerns[16]. Theo
Lynn et al. presented a list of parameters to evaluate different services from
major primary cloud providers[7]. While various surveys exist on serverless com-
puting, with different focuses and purposes, Yongkang Li et al. conducted a
thorough review of the state-of-the-art challenges and opportunities of serverless
cloud computing[17]. However, as cloud computing is a rapidly evolving field,
some of the shortcomings identified in articles from two to three years ago may
no longer be relevant in modern cloud computing.

Another study discusses Cloud Run in detail, including its pricing and the
pricing of Cloud Build, a service frequently used with Cloud Run[18]. Another
publication presents a tabulated comparative analysis of several function-as-a-
service (FaaS) platforms provided by Google, AWS, and Microsoft[19]. There are
numerous research studies that utilize Google Cloud to conduct their experiments
and simulations. For instance, Yuping Shen in[20] leverages Google App Engine
to host his study, while[21] also employs the same platform. The main reason
for both researchers to opt for App Engine is due to its versatile and flexible
nature. Laxmaiah et al. conducted a comparative analysis of Google App Engine,
Amazon Web Services (AWS), and Microsoft Azure[22]. The study compared the
services offered by these providers, focusing on aspects such as cloud services,
runtime support, language support, and Service Level Agreement (SLA). In [23],
Landoni, Marco, et al. describe how they utilized the Google Compute Engine
to efficiently deploy and evaluate a Proof of Concept for their astrophysics study.

According to [24], Google Cloud Services is a cloud computing offering from
Google that encompasses four main categories of services. The Computing cate-
gory offers the Google Compute Engine, which provides users with the ability to
select either Platform as a Service (PaaS) or Infrastructure as a Service (IaaS) to
meet their specific needs. The Storage category includes Google Cloud Storage,
a non-SQL, schema-less data storage solution, and Google Cloud SQL, which
enables the processing of complex SQL queries and is connected to MySQL. In
the Big Data category, users have access to fast and effective big data analysis
through the highly scalable Big Query. Lastly, the Application Support cate-
gory features a range of applications that allow for file viewing across multiple
platforms, such as Gmail, Calendar, and Google Suite.

Google Cloud Run is a relatively new service from Google. It was first made
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available in beta in April 2019. Research studies have utilized Google Cloud Run
for its benefits in terms of scalability, security, and ease of deployment. For in-
stance, [25] employs Google Cloud Run in its comparative study of the Container
as a Service option and Kubernetes-based orchestration methods. The feasibil-
ity of using serverless containers in scientific computing is studied in [26]. The
authors conclude that serverless containers can be effectively used for scientific
workflows based on their experiments. They use CaaS offerings from various
cloud service providers, including AWS Far-gate, Azure Container Instances, and
Google Cloud Run, which is the one they use. K. Burkat et al. evaluated the
capabilities of elastic containers and their suitability for scientific computing in
the context of scientific workflows using AWS Fargate and Google Cloud Run
infra-structures [26].

Our study aims to perform a comparison of three Google Cloud services –
server-based Compute Engine and serverless Cloud Run and App Engine- to
determine the most appropriate service for deploying a real-time vehicle location
tracking web application.

2.3 Google Cloud Services

2.3.1 Cloud Run
Cloud Run is Google’s serverless computing platform, introduced in August 2018.
It is a fully managed serverless platform for letting users develop and deploy an
application from a container image or directly from source code (and Google
provides the container). Cloud Run comes with the following services: Traffic
Management, Auto Scaling, Security, and Effective Pricing.

Traffic Management. Every deployment creates a new immutable revision,
and customers can customize how incoming traffic is routed to their revisions.
Customers can route incoming traffic to the latest or previous revision or even
split traffic to multiple revisions simultaneously. Also, customers can even fine-
tune the percentage of incoming traffic to each revision.

Auto Scaling. Cloud Run adds and removes container instances automatically
to handle all incoming requests. Cloud Run is capable of what is commonly
referred to as scale to zero: if there are no incoming requests to the service, even
the last remaining container instance will be removed. This behavior is enabled
by default: the default number of minimum instances is 0. Note that several
minimum instances of 0 may result in cold starts, where latency is proportional
to the time it takes for your container to start. Customers should set the number
of minimum instances to at least one if their container takes more than 10 seconds
to start because Cloud Run does not keep requests pending for longer than 10
seconds [8].

Security. A Cloud Run service can be reachable from the internet, and cus-
tomers can restrict access by configuring a security policy. By default, all incom-
ing traffic is allowed access.

Pricing. With Cloud Run, customers are charged for the CPU and memory al-
located to a container instance rounded up to the nearest 100 milliseconds. With
scale to zero (the default configuration), customers are not charged if their service
is unused. There are two pricing models customers can enable: request-based or

7



instance-based. With request-based, if a container instance is not processing re-
quests, customers are not charged, but when it is, customers pay a per-request fee.
With instance-based, customers are charged for the entire lifetime of a container
instance, but there is no per-request fee.

Free Tier. Google has a generous free tier: the first 180,000 vCPU-seconds
per month are free, the first 360,000 GiB-seconds per month are free, and the
first 2 million requests per month are free. Also, requests are only billed when
they reach the container after successfully being authenticated. Requests denied
by customers’ security policies are not billed. When executing a build using
Google’s Cloud Build service with Cloud Run, the first 120 build-minutes per
day are free[18]. Thereafter, the pricing varies but appears to start at $0.003 per
build-minute.

2.3.2 App Engine
App Engine is Google’s platform-centric solution as a type of PaaS. With App
Engine, customers do not need to buy, build, or operate hardware infrastructure
[27]. Customers need to select from either the App Engine flexible environment
or the App Engine standard environment to run their applications in App Engine.
They can also use both environments simultaneously. App Engine standard en-
vironment supports source code written in specific versions [27] of Python, Java,
Node, PHP, and Go. The standard environment is suitable for applications that
need to handle sudden and extreme traffic spikes. App Engine also can scale to
zero. This helps reduce the cost incurred when the application is not serving any
request.

App Engine Flexible environment deploys and manages the applications in-
stances in a docker container on a Compute Engine Virtual Machine (VM). This
option is suitable for applications that don’t anticipate sudden spikes in traffic
and need to scale up or down gradually. According to Google [27], the flexible
environment is suitable for applications that satisfy the following characteristics.

• Source code that is written in a version of any of the supported program-
ming languages: Python, Java, Node.js, Go, Ruby, PHP, or .NET.

• It runs in a Docker container with a custom runtime or source code written
in other programming languages.

• Uses or depends on frameworks that include native code.

• Accesses resources or services of your Google Cloud project that reside in
the Compute Engine network.

2.3.3 Compute Engine
Compute Engine is a server-based cloud computing service offered by Google
that provides scalable computing resources for running virtual machines (VMs).
It acts as a type of IaaS. With Compute Engine, users can create and run VMs in
Google’s data centers. It provides a high-performance infrastructure for running
a variety of workloads, including large-scale data processing, complex scientific
simulations, and web-based applications. The service is designed for enterprises,
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startups, and research organizations that need access to scalable computing re-
sources for their computing needs.

Compute Engine offers a range of features that make it an attractive choice
for businesses and organizations. It provides flexible and scalable virtual ma-
chines, automatic load balancing, and real-time scaling, which makes it easy to
handle sudden spikes in demand. Additionally, Compute Engine integrates with
other Google Cloud services, such as Google Cloud Storage, Google BigQuery,
and Google Kubernetes Engine, making it possible to build complex, multi-tiered
applications. This integration helps organizations to manage their infrastructure
more efficiently and reduces the time and effort required to deploy new applica-
tions and services.

Figure 2.2: Different virtual machine types offered by Google as per[28].

GCE offers several instance types with varying levels of CPU, memory, and
local storage to cater to different computing needs. GCE also provides options
for users to configure the network, firewall, and access scopes for their instances.
Furthermore, GCE provides pre-configured images for popular operating systems
and application environments, making it easier to quickly deploy and run appli-
cations. In addition, GCE also offers custom machine types, sole-tenant nodes,
and committed use contracts to meet the specific requirements of businesses and
organizations. Fig. 2.2 illustrates the various offerings from Google, suited for
specific purposes [28]. These offerings are straightforward virtual machine options
from Google, providing users with greater control over the machine compared to
other services.

2.4 Performance Evaluation Methodology
An experiment was employed with a containerized SmartSAT Django mobile-
web application for evaluating the performance of the application on various
serverless and server-based services available on Google Cloud. The application
was slightly altered in its configuration aspect to enable its deployment on each
service: serverless Cloud Run and App Engine and server-based Compute Engine.
This application was chosen for its ease of deployment, as it is already developed
and containerized as part of the project [29], making it compatible with Google’s
Cloud Run, App Engine, and Compute Engine services.

The SmartSAT application aims to provide critical services to San Antonio
transit users through the San Antonio Transit [29]. With a user-friendly inter-
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face, transit users can access the status of all running VIA buses on their pre-
ferred bus route. The application currently supports around ten VIA bus routes.
However, only three routes were used as part of this experiment. Google Maps
JavaScript API [29] was utilized to showcase the real-time location of the buses
on the selected route. Furthermore, the SmartSAT application has the capacity
to calculate and display the estimated arrival time at a selected bus stop on the
route. The Google distance matrix API was used for this purpose, taking into
consideration various factors such as traffic patterns, road accidents, and other
elements that may impact the trip time.

Through the app, users can access the bus routes from the home screen of the
application, where they can select their desired route. The application will then
load all the bus stops on that route, including the order in which they appear.
By clicking on any of the bus stop markers, users can view the estimated arrival
time for that stop.

This application uses a Postgres database in Google Cloud SQL to maintain
the data related to users and bus routes. The experiment was performed by host-
ing the application on the Cloud Run, App Engine, and Compute Engine services
in Google Cloud. Apart from specific services-related configuration changes, the
application used the same source code in all three deployed services. Docker was
used to containerize the application. The latest version of the Compute Engine
can directly deploy a container to it. This uses an optimized operating system
called Container Optimized OS. The configuration details for each machine used
in all three services are detailed in the evaluation section.

Below is a brief description of some of the performance matrices measured
during the experiment.

• Latency is the time traveled by the request to and back from the server.
This is also known as Network Latency or Network Delay.

• Throughput is the number of transactions per unit of time an application
can handle. Generally denoted in requests per second (RPS), Transactions
per second (TPS), hits per second, etc.

An Android emulator application was used to create the GPS movement of a
bus in a selected bus route. The following steps were performed on each de-ployed
service to measure the performance.

1. Navigate to the deployed service link from the Android emulator and log
in to the website as a bus driver.

2. Start two different bus routes. (This will emulate the same scenario when
a real bus moves in that route.)

3. Access the application as a normal user (Bus Rider) from different devices.

4. Click on a different bus stop icon so the website will show the Estimated
Arrival time for that stop.

(a) Repeat this task for both the active routes from different tabs opened
in the web browser. This will mimic multiple people accessing the
application.
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(b) Once both buses reach their destination stops, stop the bus driving
from the driver screen.

5. Navigate to the cloud monitoring option in Google Cloud for the corre-
sponding service and note down the results.

2.5 Results Evaluation
This section presents the results of the comparative analysis of google cloud’s
serverless and server-based services in terms of performance and usability of the
service. The usability of the services is associated with service configuration,
pricing, and relevant system features as well as documentation and learning,
and the performance of a containerized mobile app application featuring appli-
cations Latency, Throughput, and CPU utilization on each of the services. The
containerized web application [29] was used to measure the application’s latency,
throughput, and CPU utilization when the application is hosted in Google’s Cloud
Run, App Engine, and Compute Engine. Table 1 and Table 2 show the results
of the analysis. The numbers in the tables are mostly sourced from configuring
the services.

2.5.1 Service Configuration, Pricing, and Features
The results in Table 1 focus on comparing the service configurations, pricing, and
features. These services offer different configurations and pricing models, making
them suitable for different types of applications and use cases. Cloud Run is a
relatively new service and is designed for serverless deployment of containerized
applications. It has a request-based and instance-based pricing model, with the
first 120 minutes of build time per day being free. The instance used in this
experiment had a memory capacity of 0.5 GB per container and a single. However,
it has a high rating for documentation and a learning curve, making it easy for
beginners to get started.

App Engine, on the other hand, has many instance classes, which can be
selected based on the computing requirements of the application. The cost of
using the service is $0.031611 per hour, and it has a moderate memory capacity
of 256 MB. The documentation and learning curve for App Engine is rated as
3.5/5, indicating that it is not as straightforward as Cloud Run, but still easy to
follow with adequate documentation available.

Compute Engine is a flexible and scalable computing service that provides
virtual machines for running applications. It has a vCPU-based pricing model
with a cost of $0.021811 per vCPU hour and offers a free tier with a limit of
time. It has the highest memory capacity of 4 GB among the three services and 2
CPUs. However, it has a lower rating for documentation and learning curve, with
a rating of 3.5/5 indicating that it may take more effort for users to configure the
entire setup, especially for beginners.
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Table 2.1: Comparison results on service configuration, pricing, and features.

Service Config-
uration

Google Cloud
Run (Serverless)

Google App En-
gine (Serverless)

Google Compute
Engine (Server-
based)

Instance type - F1 e2-medium

No of CPU’s 1 600 MHz 2

Memory 0.5GB / container 256 MB 4GB

Pricing

Compute Time
Unit

100 ms per hour per in-
stance

per vCPU hour

Pricing Models request-based,
instance-based

Many instance
classes as shown
on [30]

On Demand,
Spot Price

Build Fee First 120 min-
utes/day are free,
pricing varies
thereafter

$0.031611 per
hour (us-central-
1)

$0.021811 /
vCPU hour (Pre-
defined vCPU
model)

Free Tier First 180,000
vCPU-
seconds/month,
first 360,000 GiB-
seconds/month,
2 million re-
quests/month
[31]

28 hours per day
of ”F” instances,
9 hours per day
of ”B” instances,
1 GB of egress per
day [31]

Free Tier e2-
micro instance.
limit is by
time.[31]

Features

Documentation 4/5 3.5/5 3.5/5

2.5.2 Performance of Application
A containerized web application [29] was used to measure the application’s latency
and throughput when the application is hosted in Google’s serverless Cloud Run,
and server-based App Engine, and Compute Engine. The main functionality of
the application is to show the real-time location of San Antonio VIA buses on
selected bus routes and serve the estimated arrival time for select bus stops on
user request [29].

Two different bus routes were emulated on the application with the help of
an android device emulator. Then the application was accessed by various clients
(bus riders) emulating more load on the service. We measured the performance
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Table 2.2: Comparison results on performance matrices.

Service Config-
uration

Google Cloud
Run (Serverless)

Google App En-
gine (Serverless)

Google Compute
Engine (Server-
based)

Latency (50%) 47.24ms 50.50 ms -

Throughput

• Sent:
9.47k/s

• Received:
11.15k/s

• Sent:
3.422KiB/s

• Received:
2.241KiB/s

• Sent:
0.09KiB/s

• Received:
0.16KiB/s

Container
Startup La-
tency (50%)

475.22ms 4.944s -

CPU Utilization
(50%)

1% 6000 Megacy-
cles/minutes

2%

Auto-scaled
based on load

Yes Yes No

matrices using the Google Cloud Monitoring service. Table 2 shows the results of
the performance matrices. The measured metrics include Latency, Throughput,
Contain-er Startup Latency, CPU Utilization, and whether the service supports
auto-scaling based on load.

Figure 2.3: Cloud Run Service Throughput Sent Bytes

Cloud Run has the lowest Latency with a value of 47.24ms and the highest
Throughput with a Sent rate of 9.47k/s and Received rate of 11.15k/s as shown
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Figure 2.4: Cloud Run Service Throughput Received Bytes

Figure 2.5: App Engine Throughput

Figure 2.6: Compute Engine Throughput

in Fig. 2.3 and Fig. 2.4. It also has the lowest Container Startup Latency with
a value of 475.22ms (Fig. 2.7) and its CPU utilization is 1% (Fig. 2.8). Cloud
Run supports auto-scaling based on load.
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Figure 2.7: Startup Latency Cloud Run

Figure 2.8: CPU Utilization Cloud Run

Figure 2.9: CPU Utilization App Engine

App Engine has a slightly higher Latency of 50.50ms compared to Cloud Run.
Its Throughput Sent rate is lower with a value of 3.422KiB/s and a Received rate
of 2.241KiB/s (Fig 2.5). The Container Startup Latency is higher at 4.944s. The
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Figure 2.10: CPU Utilization Compute Engine

CPU utilization is 6000 Mega cycles/minutes (Fig 2.9). App Engine also supports
auto-scaling based on load.

Compute Engine does not have a value for Latency or Container Startup
Latency, but it has the lowest CPU utilization of 2% (Fig. 2.10). It does not
support auto-scaling based on load and has the lowest Throughput Sent rate of
0.09KiB/s and Received rate of 0.16KiB/s (fig 2.6).

We found that the auto-scale feature from the App Engine and Cloud Run
helped the application to quickly spin up additional instances so that it can serve
the requests with less latency. We assumed that the Cloud Run service might
perform better when we started the experiment. However, we observed that
the latency was high for cloud-run service initially. This was mainly because of a
quota limit hit by the Distance Matrix API used within the application. However,
measuring the same values at a later stage showed that the latency was less for
the Cloud Run service.

In conclusion, the serverless Cloud Run has the best performance compared
to the other two services, based on the metrics. The choice between the services
to deploy applications will depend on the specific requirements and priorities of
the user, such as cost, ease of use, and scalability.

2.5.3 Limitation and Implication
The ratings of the documentation and learning curve presented in Table 1 were
solely based on the author’s experience during the study with the three cloud
services. They may not necessarily reflect the objective views or opinions of oth-
ers. The performance analysis mainly relied on the Cloud Monitoring service
provided by the google cloud to measure the application’s matrices. The lower
CPU utilization values may be the result of less than adequate load on the web
application. These are some of the improvements that we are planning to im-
plement in a future date. The Compute Engine required an additional static IP
to host the service with HTTPS support. This added more cost to the setup.
Comparing the overall expense for the setup to host the same application over
these three different services, Cloud Run costs the minimum $13.055 [32] with
maximum benefits like HTTPS, auto-scaling, cloud logging, cloud monitoring,
etc.
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2.6 Conclusion and Future Work
In this study, the overall performance and usability of a containerized mobile-
web application hosted on serverless and server-based services on Google Cloud
were analyzed. The application’s latency and throughput were measured when
hosted on those three different platforms. The usability analysis focused on rating
documentation and the learning curve on each of the three services.

The results of the analysis show that Cloud Run is a highly efficient and cost-
effective option for deploying real-time web applications. With its request-based
pricing model and free tier offering, users can save on costs compared to other
Google Cloud services like Compute Engine and App Engine. The simplicity of
the service also makes it an attractive choice for beginners, as users only need to
provide the location of the application container to get started. Furthermore, the
Cloud Run service is capable [15] of auto-scaling based on load, providing low
latency and good throughput performance, as shown in the comparison data. In
conclusion, Google Cloud Run offers a strong combination of cost-effectiveness,
ease of use, and performance, making it a suitable option for real-time web ap-
plication applications.

In our future study, we plan to expand the comparison of the overall perfor-
mance and usability of the same containerized application on a serverless compute
service (container without infrastructure) provided by two other Cloud services:
AWS and Microsoft Azure. The serverless offerings we will be examining are
AWS App Runner and Azure Container Apps.
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Evaluating the Usability and
Performance of a Containerized
Mobile Web Application on
Serverless Cloud Platforms

This study analyzed the features, usability, and performance of three serverless
cloud computing platforms: Google Cloud’s Cloud Run, Amazon Web Service’s
App Runner, and Microsoft Azure’s Container Apps. The analysis was conducted
on a containerized mobile application designed to track real-time bus locations
for San Antonio public buses on specific routes and provide estimated arrival
times for selected bus stops. The study evaluated various system-related features,
including service configuration, pricing, and memory & CPU capacity, along with
performance metrics such as container latency, Distance Matrix API response
time, and CPU utilization for each service. The results of the analysis revealed
that Google’s Cloud Run demonstrated better performance and usability when
compared to AWS’s App Runner and Microsoft Azure’s Container Apps. Cloud
Run exhibited lower latency and faster response time for distance matrix queries.
These findings provide valuable insights for selecting an appropriate serverless
cloud service for similar containerized web applications.

3.1 Introduction
Cloud computing is a paradigm that enables the seamless addition and utilization
of services over the Internet, with the unique capability of dynamic scalability.
In the past, the cloud was frequently employed as a representation of a portion of
the Internet that included certain infrastructure. However, in present times, the
term ”cloud” has evolved to serve as a metaphor for the wide range of services
offered over the Internet[33]. The concept of cloud computing can date back to
1950 - 1960 [34, 35]. There were dramatic developments in this space after IBM
introduced its new operating system named VM, which allowed its mainframe
systems to have multiple virtual systems, or ’virtual machines (VM)’, on a single
physical node [35]. The National Institute of Standards and Technology (NIST)
defines cloud computing as follows. “Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction”[36].
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Serverless cloud computing is a fairly new concept. According to [37], server-
less cloud computing streamlines nearly all system administration tasks, effec-
tively simplifying the cloud usage experience for programmers. When cloud com-
puting became popular for the first time, developers were drawn to solutions like
Amazon EC2 because they offered full control over application instances [37].
However, this also meant that developers were responsible for managing and scal-
ing their applications, which could be time-consuming and complex. Additionally,
developers often did not want to make significant changes to their existing code to
make it cloud-friendly. As cloud computing matured, new technologies like FaaS
(Function as a Service) emerged. FaaS provides a serverless computing platform
that allows developers to run code without having to worry about infrastructure
or scaling. This makes it ideal for running small, frequently-invoked tasks, such
as processing payments or sending emails.

Currently, there are many cloud service providers available, with Google Cloud
Platform (GCP), Amazon Web Services (AWS), and Microsoft (MS) Azure being
the main players. Despite their current popularity, there is no active academic
research available that provides a comparison of their usability and performance.
Therefore, we have taken the initiative to conduct a comparative study of these
services using a Django web application with a heavy reliance on Google Maps and
Distance Matrix APIs. The analysis incorporated and focused on three serverless
platforms: Google’s Cloud Run, AWS’ App Runner, and Azure’s Container Apps.
With this, the significant contributions of the research include:

• An overview of recent academic research related to serverless cloud com-
puting from 2015 to 2023.

• A comparative analysis of the serverless service features offered by Cloud
Run, App Runner, and Container Apps.

• A usability analysis of the serverless services offered by Cloud Run, App
Runner, and Container Apps based on their ease of use and suitability for
beginners in serverless computing.

• A performance analysis to deploy a containerized Django web application
with heavy use of Google Maps APIs on the three serverless platforms:
Cloud Run, App Runner, and Container Apps.

• Suggestions on the best serverless service to deploy containerized web ap-
plications with heavy use of Google Maps APIs.

The rest of the paper is organized as follows: Section 3.2 reviews a few aca-
demic studies in the cloud computing and serverless computing domain conducted
from 2015 onward; Section 3.3 describes the serverless services used in the study;
Section 3.4 discusses the Django application used for evaluating the performance
of the services; Section 3.5 discusses the research methodology used in the study;
Section 3.6 presents the results of the performance and usability analysis and
Section 3.7 concludes the work.
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3.2 Background on Serverless Computing
The idea of serverless computing has been around for many years, but it really
started to take off in the early 2010s. This was due in part to the increas-
ing popularity of cloud computing, as well as the development of new serverless
platforms like AWS Lambda and Google Cloud Functions. In the early days,
serverless computing was primarily used for small, event-driven tasks. However,
as the technology has matured, it has become more widely adopted for a wider
range of applications. Today, serverless computing is used by businesses of all
sizes to build everything from simple web applications to complex microservice
architectures.

There is a good amount of research happening in the serverless domain explor-
ing its advantages and disadvantages. After conducting a thorough analysis of the
literature published in this field from 2015 to 2023, a brief overview is presented
below. In [38], Zaid Al-Ali et al. proposes a new abstraction for serverless comput-
ing named ServerlessOS. It abstracts away the details of resource management so
developers can focus on their code. This allows processes to be seamlessly scaled
across the data center, making serverless computing more serverless. R. Arokia
Paul Rajan in [39] provides a comprehensive study of the serverless computing ar-
chitecture and the working principle of the serverless computing reference model
adapted by AWS Lambda.

Eivy and Weinman [40] analyzed the economics of serverless cloud computing,
showing that the cost of a publicly hosted serverless service can grow quickly,
even for low levels of traffic. They also noted that the free quota offered by most
cloud service providers is insufficient for a decent public web service. Van Eyk
et al. [41] discussed the early days of serverless computing and the obstacles and
opportunities that existed at the time. Some of the obstacles, such as the lack
of maturity of the technology and the limited availability of serverless platforms,
have been addressed in recent years. However, new obstacles have emerged, such
as the need to manage complex event-driven architectures.

With large organizations moving to the cloud, protecting the data in the cloud
is equally important. In [42], Anaya Garde et. al. proposes a microservices-
based approach to protect cloud-native assets using a serverless framework. This
approach first discovers cloud assets and takes a snapshot-based backup of them.
The backed-up assets can then be used to recover the asset in the event of a
disaster or data loss. In [43], Mileski and Gusev used Google Cloud’s serverless
services to experiment with using serverless computing for real-time monitoring
of thousands of patients with streaming electrocardiograms. This is an example
of an embarrassingly parallel task, which means that it can be broken down into
small, independent tasks that can be executed in parallel. They found that the
serverless solution was able to achieve a speedup of almost 40 compared to a
sequential execution on a virtual machine, and a speedup of 23 compared to a
parallel execution using virtual machines.

Initially, serverless computing was largely associated with Function as a Ser-
vice (FaaS) offerings from various cloud providers. However, there has been
limited research in this area analyzing and comparing the different services in
this domain [44, 45, 46, 47]. But, in 2023, there are more serverless offerings from
most of the major cloud service providers. This major change happened with the
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introduction of containers in serverless cloud computing [48]. In [49], Rodriguez
Cortes et al. discusses the open issues of the serverless architecture.

3.3 Serverless Computing Services
Serverless cloud computing platforms like Google Cloud Run, AWS App Run-
ner, and MS Azure Container Apps offer services on hassle-free containerized
applications running without infrastructure management. These platforms prior-
itize scalability, reliability, and cost-effectiveness. Specifically, Cloud Run allows
developers to run stateless containers via HTTP requests, App Runner enables
running containerized web apps and API services, and Container Apps deploys
containerized applications from code or containers without complex infrastruc-
ture orchestration. Table 3.1 summarizes the different features offered by these
serverless services. Although they offer various features, they also share many
similarities. The following describes the specific details of each service.

Table 3.1: Different features offered by three serverless services.

Feature Google Cloud
Run

AWS App Runner Microsoft Azure
Container Apps

Automatic Build
and Deployment

Yes Yes Yes

Load Balancing Yes Yes Yes

Scalability Automatic Automatic Automatic

scaling to zero Yes No Yes

General Purpose Yes No Yes

Security High High High

Cost Competitive Competitive Competitive

Ability to Split
traffic between
different versions
of the applica-
tion.

Yes Yes Yes

Cloud Monitoring
options.

Yes Yes Yes

3.3.1 Google Cloud Run
Google Cloud documentation defines Cloud Run as a serverless computing plat-
form that allows developers to run stateless containers that are invocable via
HTTP requests. Cloud Run is a fully managed service that abstracts away all
infrastructure management, so developers can focus on what matters most —
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building great applications [50]. Cloud Run was first announced in 2018 and made
generally available in 2019. Cloud Run is built on top of the Kubernetes container
orchestration platform [51]. Kubernetes is a popular open-source project that is
used by many organizations to manage containerized applications. Cloud Run
offers a number of benefits [52], including:

Traffic Management: Cloud Run’s traffic management allows you to cus-
tomize how incoming traffic is routed to your application revisions[50]. You can
route traffic to the latest revision, a previous revision, or even split traffic be-
tween multiple revisions simultaneously. You can also fine-tune the percentage
of incoming traffic that goes to each revision. This gives you a lot of flexibility
in how you deploy and manage your applications, ensuring that they are always
available and performing at their best.

Cost-effectiveness: Cloud Run charges customers for the CPU and memory
allocated to a container instance, rounded up to the nearest 100 milliseconds. If
a service is not in use, customers are not charged. This can lead to significant
cost savings, especially for applications with variable or unpredictable usage pat-
terns. There are two pricing models: request-based and instance-based. With
request-based, customers are charged a per-request fee when a container instance
is processing requests. With instance-based, customers are charged for the entire
lifetime of a container instance, but there is no per-request fee.

Scalability: Cloud Run automatically adds and removes container instances
to handle all incoming requests. This is known as auto-scaling. Cloud Run can
scale to zero[50], which means that if there are no incoming requests, even the
last remaining container instance will be removed. This is the default behavior,
and the default number of minimum instances is 0. This can help to improve
application performance and reliability, and it can also help to save money by
avoiding over-provisioning of resources. However, setting the minimum number
of instances to 0 may result in cold starts. A cold start occurs when a container
is started for the first time since it was last shut down. Cold starts can add
latency to requests because the container needs to load its application code and
dependencies before it can start processing requests.

DevOps automation: Cloud Run can help to automate many of the tasks
involved in DevOps, such as provisioning and scaling infrastructure, managing
application deployments, and monitoring application health. This can free up
DevOps teams to focus on other tasks, such as improving application performance
and security.

Security: Cloud Run services are accessible from the internet by default. To
restrict access, customers can configure a security policy that specifies which IP
addresses or hostnames are allowed to access the service. If no security policy
is configured, all incoming traffic is allowed access, which is not recommended
for production environments. Customers should configure a security policy that
restricts access to their services to only authorized users or systems.

Agility: Cloud Run can help to improve the agility of application develop-
ment and deployment. By eliminating the need to provision and manage servers,
developers can focus on building and testing applications. This can help to
shorten the time to market for new applications.
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3.3.2 AWS App Runner
AWS App Runner is a fully managed service that helps developers build, deploy,
and run containerized web applications and API services without prior infras-
tructure or container experience [53]. It provides a high-level abstraction over
the underlying infrastructure, allowing you to focus on the application code. App
Runner supports a variety of programming languages and frameworks, including
Node.js, Python, Java, Go, and . NET. It also supports a variety of container
images, including Docker and Amazon ECS. App Runner also provides a number
of features that make it easy to manage the applications, including:

Automatic scaling: App Runner’s autoscale feature can help you improve
the performance, reliability, and cost-effectiveness of your application. App Run-
ner automatically scales your application up or down based on demand, so you
only pay for the resources you use [53, 54]. App Runner can also automatically
scale your application to handle spikes in traffic, so your users always have a good
experience. Additionally, App Runner can automatically recover from failures by
scaling your application back up. You can provide an auto-scaling configuration
to customize the scaling behavior. If you do not provide one, App Runner pro-
vides a default configuration with recommended values. You can share a single
auto-scaling configuration across multiple App Runner services to ensure they
have the same auto-scaling behavior. Unlike Google Cloud Run, AWS App Run-
ner doesn’t allow the scale down to zero option.

Health checks: App Runner automatically performs health checks on your
application. If your application fails a health check, App Runner will automati-
cally restart it [54].

Logging and monitoring: App Runner provides detailed logs and metrics
for your application. This helps you troubleshoot problems and identify perfor-
mance bottlenecks [54].

Automatic Deployments: With App Runner, you can easily build and
deploy your application in a matter of minutes. Simply connect App Runner to
your code repository or container image registry to get started. App Runner will
then monitor your repository for any updates to your source code or container
image. Once an update is detected, App Runner will automatically build and
deploy the new version of your application [54]. This feature is an efficient way
to keep your application up to date, reducing the time it takes to deploy new
features and bug fixes while improving the overall reliability of your application.

Load Balancing: App Runner offers the important capability of automati-
cally balancing traffic across multiple containers [54]. This feature is highly signifi-
cant in managing unexpected surges in traffic while ensuring optimal performance
and availability. Given this, it proves to be a viable option for applications that
require a robust traffic capacity and dependable availability.

Networking: App Runner provides users with the flexibility to tailor the
interaction between their service, applications, and resources. Users are afforded
the option to restrict access to their service solely within an Amazon VPC or
enable the service to communicate with other AWS services within a VPC. This
degree of control enables users to satisfy their security and networking compliance
requirements [54].

23



3.3.3 Microsoft Azure Container Apps
Azure Container Apps is a fully managed environment that enables you to run
microservices and containerized applications on a serverless platform[55]. It is
a good choice for applications that need to be deployed quickly and easily and
that can scale dynamically based on demand. Container Apps can be used to
deploy API endpoints, host background processing applications, handle event-
driven processing, and run microservices. Applications built on Azure Container
Apps can dynamically scale based on HTTP traffic, event-driven processing, or
CPU or memory load.

Serverless hosting: Container Apps provides a serverless architecture that
eliminates the need for managing the underlying infrastructure. This translates
to a worry-free experience for developers as they don’t have to be concerned with
server provisioning, capacity management, or application scaling. Instead, they
can focus solely on developing their applications with ease.

Automatic scaling: Container Apps provide a solution to the problem of
having to constantly monitor and adjust application capacity. With this technol-
ogy, the applications can be scaled automatically based on various factors, such
as CPU usage, memory usage, and network traffic [55]. This ensures that the ap-
plications are always accessible to users without any interruptions. The dynamic
scaling feature of Azure Container Apps is a great feature for businesses that
need to handle varying levels of demand for their applications. By removing the
burden of manual capacity provisioning, companies can focus on other aspects of
their operations that are critical to success.

Secured by default: Container Apps provide robust security features like
role-based access control[55] and network isolation to keep your apps secure from
unauthorized access. They’re an excellent choice for maintaining app security.

Simple to use: Container Apps offers a user-friendly experience, featuring
a straightforward interface that simplifies the process of deploying and managing
your applications. This makes it an excellent choice for developers who are just
starting with containerization. Through the Azure Container Apps portal, you
can easily create and manage your applications. Additionally, you have the option
to manage your applications using Azure CLI or Azure PowerShell [55].

Cost-effective: Deploying and scaling your applications is made cost-effective
with Azure Container Apps. You only pay for the resources you utilize, with no
upfront costs [55, 56]. The pricing for Azure Container Apps is determined by
the number of containers you run and the amount of memory you consume.

Flexible: Azure Container Apps offers a versatile platform for deploying a
diverse range of applications, making it an excellent choice for various use cases.
You can deploy web applications, microservices, and serverless functions with
ease using Azure Container Apps.

3.4 SmartSAT Django Web Application
SmartSAT is a customizable mobile app for San Antonio Transit that provides
critical services to transit users. It is similar to other apps like Google Maps,
Moovit, and Transit, but SmartSAT is designed specifically to improve the transit
experience for lower-income people who rely on San Antonio’s public VIA Transit
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[57]. Its main objective is to provide real-time bus location information to reduce
riders’ wait times and thus the length of their daily commutes. The application
tracks bus location in real-time, ultimately improving the prediction accuracy of
bus arrival time. SmartSAT offers a variety of features that are not available on
other apps, such as:

• Real-time bus arrival information

• Seat capacity information

• Instant alert messages on schedule changes

• Secure data collection and feedback from riders on their commute experi-
ence

These features can help lower-income people who rely on public transportation
plan their trips more efficiently and avoid delays. They can also help riders
provide feedback to VIA Transit so that the agency can improve its services.

Figure 3.1: Architecture Diagram for the SmartSAT Application

Google Maps JavaScript API was used to showcase the real-time location of
the buses on the selected route. Additionally, the SmartSAT app has the capacity
to calculate and display the estimated arrival time at a selected bus stop on the
route. The Google Distance Matrix API was used for this purpose, taking into
consideration various factors such as traffic patterns, road accidents, and other
elements that may impact the trip time. The app currently supports about ten
VIA bus routes, but only three were used for the experiment of the performance
analysis. Directions API was used to showcase routes based on travel time and
modes as well as Places and Geocoding API for addressing current locations.
Figure 3.1 shows the architecture diagram for the smartSAT application.

To use the app, users first select their desired bus route from the home screen.
The app will then load all the bus stops on that route, including the order in
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which they appear. By clicking on any of the bus stop markers, users can view
the estimated arrival time for that stop. The app uses a Postgres database in
Google Cloud SQL to maintain data related to users and bus routes.

3.4.1 Deployment of SmartSAT Application on Three Server-
less Platforms

Using containers in computing has a rich and extensive history [58, 59]. Unlike
hypervisor virtualization, where an intermediation layer enables running one or
more independent machines virtually on physical hardware, containers operate
in user space atop an operating system’s kernel [60, 61]. Thus, container virtu-
alization is often referred to as operating system-level virtualization [60]. This
technology enables the creation of numerous isolated user-space instances on a
single host.

Docker is an app platform that streamlines the process of building, deploying,
and running apps by bundling all the necessary elements into containers. The
advantages of this approach include easy mobility, efficient resource utilization,
and a quick, streamlined development cycle [60, 62]. Apart form Docker there
are many other container management options available as listed in [63]. But
we decided to use docker because it was supported by the all the three services
used in the study and it was famous among the developer community. Because
of these benefits, we opted to package our application in a docker container when
the application was deployed on each of the three serverless platforms: Google’s
Cloud Run, AWS’s App Runner, and Azure’s Container Apps. We followed the
instructions outlined on [64] to establish the initial configuration of the docker
file and build it for the Cloud Run platform. We then made minor tweaks to the
docker file to address various application requirements. To guarantee deployment
on other cloud services on App Runner and Container Apps, we modified the
settings files to include the appropriate port numbers and parameter values. Using
a container instead of a virtual machine is more cost-effective. With a container,
the user is only billed for the time it is running, whereas a virtual machine is
billed for the entire time it is powered on. This makes container deployment a
more economical option in my case.

3.5 Research Methodology
The primary goal of the study was to analyze and evaluate the usability and
performance of a containerized SmartSAT Django mobile web application [52, 57]
on three serverless cloud services: Google’s Cloud Run, AWS’s App Runner, and
Microsoft Azure’s Container Apps. Toward this, the following three research
questions were accordingly developed. The evaluation measured the results of
the system features, usability, and performance of running the application on
each of the serverless services.

• RQ1: What are the key differences in system features between serverless
computing services on AWS, GCP, and Azure?
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• RQ2: Which cloud provider among GCP, AWS, and Azure offers the most
beginner-friendly documentation and learning resources for serverless com-
puting services?

• RQ3: How do serverless computing services on AWS, GCP, and Azure differ
in terms of the performance of running a containerized application?

For RQ1, we analyzed the system features of each service, considering their
service configuration, pricing, and memory & CPU capabilities. For RQ2, we eval-
uated the documentation, learning curve, and Scale to Zero capabilities of each
service, considering the perspective of a beginner serverless cloud user. Lastly,
RQ3 focused on the performance of the containerized application, measuring fac-
tors such as container latency, API response time, and Container CPU utilization
across all three services.

3.5.1 Performance Measurements of Application
For the performance measurements, the application was slightly modified to en-
able its deployment on each service. This application was chosen for its ease of
deployment, as it was already developed and containerized as part of the project
[52], making it compatible with the selected services. In order to create a re-
quired load on the application, an Android emulator was used to simulate the
GPS (Global Positioning System) movement of a bus along a selected bus route.
The following steps were performed on each deployed serverless platform: Cloud
Run, App Runner, and Container Apps.

1. Navigate to the deployed service link from the Android emulator and log
in to the website as a bus driver.

2. Start two different bus routes. (This will emulate the same scenario when
a real bus moves in that route.)

3. Access the application as a normal user (Bus Rider) from different devices.

4. Click on a different bus stop icon so the website shows the estimated arrival
time for that stop.

(a) Repeat this task for both the active routes from different tabs opened
in the web browser. This will mimic multiple people accessing the
application.

(b) Once both buses reach their destination stops, stop the bus driving
from the driver screen.

5. Navigate to the cloud monitoring option in Google Cloud for the corre-
sponding service and note down the results.

As the indicators of the performance metrics, ’Container Request Latency’,
’Container CPU Utilization’, and ’API Response Time’ were measured on the
performance analysis of the application during the study. Below is a detailed
description of the metrics measured and Fig.3.2 presents a visual representation
of their concepts.
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Figure 3.2: Visual representation of the concepts of Request Latency, CPU
Usage, and API Response Time.

• Container Request Latency: When a client sends a request to a server
and waits for the corresponding response, the time it takes for this pro-
cess is known as request latency. This is a crucial performance metric in
the realm of computer networks and distributed systems, as it affects the
overall system performance. Factors such as distance between the client
and server, network congestion, and hardware limitations can impact the
latency. In this study, we conducted performance testing for three services
from the same device and network. It’s important to note that the latency
values captured primarily reflect the container request latency and not the
client-side network latency. Additionally, the cloud provider’s network load
can influence the service’s response time to user requests. By maintaining
consistent user-side network and hardware configurations, the latency mea-
surements captured by the cloud provider’s application monitoring services
provide a clear picture of the application latency for the specific service.

• API Response Time: Response Time is defined as the duration between
the time a user sends a request and the moment the system responds with
the intended output. A pictorial representation of the same is shown in Fig.
3.2. Although response time may appear like latency, it encompasses both
latency and processing time. The significance of response time in modern
computing cannot be overstated, as it directly impacts the user experi-
ence. A slow response time can lead to frustration, decreased productivity,
and negative perceptions of the system or application. Therefore, it is im-
perative to optimize response time to enhance user satisfaction. Various
techniques such as caching, load balancing, and optimization of code can
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be employed to reduce response time.

• CPU Utilization: When evaluating the performance of the container-
ized application, it is essential to consider its CPU usage. During the test
load, the CPU usage for the container can provide valuable insights into
its efficiency and effectiveness. By analyzing the CPU usage patterns, it
is possible to identify any bottlenecks or performance issues that may be
impacting the container’s performance. It is important to note that CPU
usage can vary depending on the workload and the hardware configuration
of the system. Therefore, it is essential to establish a baseline for CPU usage
and compare it against the actual usage during the test load. This com-
parison can help to identify any abnormal behavior that may be indicative
of performance issues.

3.6 Evaluation Results
This section presents the results of the analysis in terms of system features,
usability, and performance of the three serverless services: Google’s Cloud Run,
AWS’s App Runner, and Microsoft Azure’s Container Apps. Tables 3.2, 3.3, and
3.4 show the results of the analysis. The numbers in the table 3.4 are mostly
sourced from configuring the serverless services.

3.6.1 Results of Analysis on System Features
Comparing system features on each of the services is associated with service
configuration, pricing, and relevant system features such as memory and CPU.
This analysis is to answer RQ1: What are the key differences in system features
between serverless computing services on AWS, GCP, and Azure? Table 3.2
compares the service configurations, pricing, and system features of the three
services. These services offer different configurations and pricing models, making
them suitable for different types of applications and use cases.

Cloud Run is Google’s serverless computing platform that allows for the easy
deployment of containerized applications. It is priced on the basis of the number
of requests and compute time used. The first 120 minutes of build time per day
is free. This experiment used an instance with 0.5GB of memory per container
and a single CPU. The application was able to handle a high volume of requests
without any performance degradation.

AWS App Runner, on the other hand, does not offer free quotas. It costs
around $0.064 per vCPU-hour and $0.007 per GB-hour. It supports two pricing
models: a provisioned plan and an active container instance plan. The maximum
number of instances for the service is limited to 25, but the maximum concurrency
is 200, compared to 100 for Cloud Run. The maximum memory size available for
a container is 12 GB, while Cloud Run has a capacity of 34 GB. App Runner also
has a maximum CPU capacity of 4, while Cloud Run has 8. I found the learning
curve for AWS to be steep.

Microsoft Container Apps is a relatively new service launched in May 2022
[65]. It offers two pricing options: one based on resource utilization and one based
on a fixed pricing plan. The free tier quotas are the same for both Cloud Run and
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Table 3.2: Comparison results on system features.

Service Config-
uration

Google Cloud
Run

AWS App Runner Microsoft Azure
Container Apps

No of CPU’s 1 1
Memory 0.5 GB / con-

tainer
2.0 GB

Min number of
Instances

0 1 0

Max number of
Instances

100 by default,
but depends on
CPU and memory
configurations

25 300

Max Concurrency
per instance

1000 200 Supports custom
value

Pricing
Compute Time
Unit

100 ms 1s 1s

Pricing Models request-based,
instance-based

Provisioned, and
active container
instances

Plans available
based on resource
consumption and
a dedicated plan
option

Free Tier First 180,000
vCPU- sec-
onds/month, first
360,000 GiB-
seconds/month,
2 million re-
quests/month

No Free tier,
$0.064 / vCPU-
hour $0.007 /
GB-hour

The first 180,000
vCPU-seconds,
360,000 GiB-
seconds, and 2
million requests
each month are
free

Memory &
CPU
Min Memory 1 GB 0.5 GB 0.5
Max Memory 34 GB 12 GB 4
Min vCPUs <1 0.25 0.25
Max vCPUs 8 4 2

Container Apps. Container Apps support scaling to zero if the scaling setting
is not based on CPU utilization. The maximum number of instances supported
is 300, which is higher than the other two services. In this test, a configuration
of 1 CPU core and 2 GB of memory was used for the container. There was
a good amount of documentation available about getting started with hosting
service, but due to the recent release of the service, there were not many external
resources available about the service.

To summarize, Google Cloud Run offers more memory and CPU options and
supports more requests per container instance than AWS App Runner. Microsoft
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Container Apps has two pricing options and supports up to 300 instances per
service. Ultimately, the choice of service will vary based on the individual needs
of the user. Cloud run may be the preferable option for those requiring greater
memory and CPU capabilities.

3.6.2 Results of Usability Analysis
The ISO 9241-11 [66] is the standard many uses for the usability testing of soft-
ware systems. The framework comprises three components: System Effectiveness,
which assesses the users’ ability to accomplish the assigned tasks; System Effi-
ciency, which gauges the resources required by the users to complete the tasks.
And System Satisfaction, which records the users’ opinions and feedback[67]. This
standard defines the word usability as ”extent to which a system, product or ser-
vice can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use”[68]

This study focuses on analyzing the usability of serverless services, specifically
from the perspective of a beginner cloud user. The author analyzed the effective-
ness of deploying the application on each respective service. The ease or difficulty
of learning and performing the deployment task on each service, as well as the
time it took for the author to complete it, were considered measures of efficiency.
The satisfaction experienced throughout the task, from beginning to end, is the
determining factor for recommending services. Two significant factors that affect
the time it takes for a user to complete tasks on a new system are documentation
and the learning curve. The ”scale-to-zero” feature eliminates the need for addi-
tional configurations on services to adjust their capacity based on the system’s
request load. These three factors can be attributed to the ”effectiveness” and
”efficiency,” discussed in the ISO 9241-11.

Cloud Run, App Runner, and Container Apps are serverless container plat-
forms that allow you to deploy and run containerized applications without having
to worry about managing servers. Analyzing the easy-to-use usability of three
serverless services is associated with its documentation, learning curve for begin-
ners, and scale-to-zero capability. This is to address RQ2: Which cloud provider
among GCP, AWS, and Azure offers the most beginner-friendly documentation
and learning resources for serverless computing services? The results of the us-
ability analysis are summarized in Table 3.3.

For this analysis, we have evaluated the quality of documentation available
for various cloud services by primarily referring to their official documentation
pages. Additionally, we have taken into consideration the availability of open
learning resources on the Internet. Through the analysis, we have discovered
that Google Cloud run service has the most detailed and user-friendly official
documentation, along with several third-party resources readily available online.
AWS App Runner service, on the other hand, has documentation that may be
challenging for beginners to follow due to the abundance of information on the
cloud console dashboard. However, there are still resources available online for
application deployment on the service. Azure has a more straightforward cloud
console and clear documentation compared to AWS, but due to its recent launch,
there are fewer online resources available as compared to the other two services.
It should be noted that these ratings were solely based on the author’s experience
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Table 3.3: Comparison results on ease-of-use usability.

Ease of use 1 Google Cloud
Run

AWS App Runner Microsoft Azure
Container Apps

Documentation Excellent 4.5/ 5 Good 3 / 5 Good 3.5 / 5
The learning
curve for a
beginner

Gradual Learning
curve. The avail-
ability of a lot
of getting-started
templates makes
learning faster.

Pretty Steep. Too
much information
to grasp.

Gradual Learning
Curve. Exter-
nal resources were
less as it is rela-
tively new.

Scale to zero Yes2 No Yes2

1 The ratings of the documentation and learning curve presented were solely based on the au-
thor’s experience during the study with the three cloud services. They may not necessarily
reflect the objective views or opinions of others.

2 Applications that scale on CPU or memory load can’t scale to zero.

during the study with the three cloud services. They may not necessarily reflect
the objective views or opinions of others.

Scale to zero is another factor that is considered for the usability analysis of
the services. This feature allows a service to shut down the container if it doesn’t
receive any requests for a specified amount of time. This is particularly beneficial
in terms of cost savings when the end user is not utilizing the application. While
this capability is only available on GCP and Azure, it proves to be useful when
scaling based on requests instead of CPU and memory usage. Container Apps
support scaling to zero when the scaling setting is not based on CPU utilization.

In conclusion, as a beginner cloud service user, we found Google Cloud has the
most detailed and user-friendly documentation for their serverless service, with
several third-party resources available online. AWS App Runner’s documentation
may be challenging for beginners, but there are still online resources available.
Azure has a straightforward cloud console and clear documentation, but fewer
online resources compared to the other two services.

3.6.3 Results of Performance Analysis
The performance of the serverless service was evaluated using a containerized
Django web application described in section 3.4. The performance metrics, ’Con-
tainer Request Latency’, ’Response Time (Distance Matrix API)’, and ’CPU
Utilization’ of the application were measured when the application was hosted
on each of the three serverless platforms. This analysis is to address RQ3: How
do serverless computing services on AWS, GCP, and Azure differ in terms of the
performance of running a containerized application? Table 3.4 shows the results
of the evaluation.

To obtain the values of the metrics, two different bus routes were emulated
in the application with the help of an Android emulator. Then the application
was accessed by various clients (bus riders) emulating more load on the service.
The ’Container Request Latency’ is the time taken for a process when a client
sends a request to a server and waits for the corresponding response. The latency
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Table 3.4: Comparison results on Request Latency, Response Time, and CPU
utilization.

Performance
Metrics

Google Cloud
Run

AWS App Runner Microsoft Azure
Container Apps

Request Latency
(Container)

50 ms 91 ms -

Response Time
(Distance Matrix
API)

63.7 ms 71.38 ms 66.8 ms

CPU Utilization 23% 47% 0.000773% 1

Note: The corresponding graphs for each parameter can be found in Figures 3.3 - 3.8

1 Azure App monitoring graph shows the values in millicores. Thus, this value is converted
to a percentage using the formula 3.1.

values were captured primarily reflecting the container request latency and not
the client-side network latency. API Response Time is the duration between
the time a user sends a request and the moment the system responds with the
intended output. This is to get Distance Matrix API’s response to the user’s
request. The CPU utilization represents the CPU usage for the execution of the
application during the test load. These three metrics were measured by using the
Cloud Monitoring services provided by the corresponding cloud provider while
the application was running.

Figure 3.3: Request Latency for Google Cloud Run.

In terms of the ’Container Request Latency’, Google’s Cloud Run demon-
strated a lower latency compared to AWS’s App Runner. Cloud Run has latency,
with an average request latency of 50 milliseconds (Fig. 3.3). AWS App Runner
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Figure 3.4: Request Latency for AWS App Runner.

has the higher latency, with an average request latency of 91 milliseconds (Fig.
3.4). Azure Container Apps monitoring services don’t have the ability to capture
the container latency for the applications deployed. Due to this, the values for
the Azure container apps are not available. The total load on the cloud provider
for a specific time can impact the performance of that provider. The performance
test for the cloud run service and the remaining two services were performed on
two days. We can’t attribute any specific behavior from the google cloud as a
key factor for better results on the latency value.

Figure 3.5: Response Time for Google Cloud Run, AWS App Runner, and
Azure Container Apps (A=71.66, B=71.11, C=67.22, D=66.38).

Regarding the Response Time to Distance Matrix API, the average response
time was better when the application was hosted on Cloud Run than being hosted
on App Runner and Container Apps (Fig. 3.5). The response time for Cloud Run
is 63.7 milliseconds on average, while App Runner and Container Apps have an
average response time of 71.38 and 66.8 milliseconds, respectively. Tests for AWS
were run from 10:50 PM to 12:30 AM and for Azure from 11:30 AM to 12:30
PM. Therefore, a single graph is presented to cover the results for both services
during the test duration. As shown in Fig. 3.5 and Table 3.4, the average values
of A and B represent the response time for AWS App Runner, while the averages
of C and D represent the response time for Azure Container Apps. We observe
that the better response time when hosted on Google Cloud Run may be because
the Distance Matrix API was also from Google, which may have helped in faster
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communication between the application and API.
In terms of CPU utilization, Google Cloud Run uses an average of 23 % (Fig.

3.6). AWS App Runner uses the most amount of CPU, with an average CPU
utilization of 47% (Fig. 3.7). Azure Container Apps uses the least amount of
CPU, with an average CPU utilization of 0.000773% (Fig. 3.8). As the Azure
Container Apps monitoring graph shows the values in millicore, this value is
converted to a percentage using the formula 3.1 below, as indicated in Table 3.4.
The lower CPU Utilization values for Azure can be because of how the CPU is
allocated for the application. Cloud Run and App Runner use CPU the entire
time the container runs, whereas the Azure container apps request CPU only
when it needs to process a request. So, directly comparing this with Cloud Run
and AWS is not right when considering the total container CPU usage.

percentage = number of cores

106 × 100 (3.1)

Figure 3.6: CPU Utilization for Google Cloud Run.

Figure 3.7: CPU Utilization for AWS App Runner.

Overall, the findings of the analysis revealed that Google’s Cloud Run ex-
hibited superior performance and usability compared to AWS’s App Runner and
Microsoft Azure’s Container Apps on this particular application. Cloud Run
demonstrated the lowest latency at 50 ms and a faster response time of 63.7
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Figure 3.8: CPU Utilization for Azure Container Apps.

ms for distance matrix queries. These results provide valuable insights for in-
dividuals seeking to select an appropriate cloud service for similar containerized
web applications. Google Cloud Run might be the best service to host a Django
containerized web application with Google Maps and Distance Matrix API usage.

3.6.4 Limitation and Implication
The ratings for documentation and learning curve presented in Table 3.3, are
derived solely from the author’s experience with the three serverless cloud services
throughout the in-depth study that includes the entire application deployment
process as well as subsequent maintenance activities. It is important to note that
these ratings may not necessarily reflect the objective views or opinions of others.
The performance analysis was primarily conducted using the Cloud Monitoring
service offered by Google, AWS, and Azure to measure the application’s metrics.
It is possible that lower CPU utilization values were due to insufficient load on
the web application. In particular, the lower CPU Utilization values for Azure
Container Apps can be because of how the CPU is allocated for the application.
Cloud Run and App Runner use CPU the entire time the container runs, whereas
the Azure Container Apps request CPU only when it needs to process a request.
Thus, directly comparing this with Cloud Run and App Runner is not right when
considering the total container CPU usage. Also, the performance matrix values
are specific to a containerized mobile web application with heavy use of google
maps APIs. These values may be different for other applications.

3.7 Conclusion
This research aimed to identify the key differences in system features, ease-of-
use usability, and performance between AWS, GCP, and Azure serverless cloud
computing systems with respect to a containerized mobile web application. By
reviewing the academic research works that happened in the serverless computing
domain in the last 6 to 8 years, we found that a lot of new research is happening
in this area, especially in recent years. This paper focused on several which talked
about the history of cloud and serverless computing and the comparative study
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of different cloud services. After thoroughly examining the features of serverless
services offered by GCP, AWS, and Azure, it was observed that the Google Cloud
Run service stands out with its extensive range of memory and CPU options. It
also supports a greater number of containers, instances per service, and maximum
concurrency per instance compared to its competitors. The AWS App Runner
service and Azure Container Apps were found to be the next best options. When
it comes to ease of use and usability of services, Google Cloud Run provides
the easiest-to-understand documentation and educational materials for beginners.
Azure and AWS also offer helpful resources, but Google Cloud Run stands out as
the most beginner-friendly option. From the performance analysis of the services,
we found that the performance of the Google Cloud Run service was superior in
regards to Container Request Latency and Distance Matrix API response time.
Meanwhile, Azure Container Apps exhibited the lowest CPU memory utilization
compared to the other two options.

From these findings, our suggestion is to opt for GCP as the primary choice,
followed by Azure, for those developers who are new to the concept of serverless
computing. On the other hand, AWS is a suitable option for developers already
well-acquainted with serverless computing. These key contributions will help
future academic researchers and developers when making a decision to choose a
serverless cloud platform for deploying similar containerized applications.

The analysis of performance results in this comparative study was focused
solely on the particular mobile web application. However, there is potential for
conducting further research on other application domains and exploring a broader
range of cloud providers beyond those examined in this study.
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Summary & Conclusion

As the industry shifts towards cloud technology, more people are transitioning
their applications to the cloud in order to stay up-to-date. It’s crucial to select
the most secure and cost-effective option for your application. Conducting a
comparison of various serverless services offered by major cloud providers can
assist researchers and organizations in selecting the best fit for hosting their
applications.

In Chapter 2, we conducted a comparative analysis of three Google Cloud
services, both serverless and server-based, for hosting a containerized mobile web
application with heavy usage of Google Maps APIs. This section discusses various
cloud deployment models along with the features of each service.

Chapter 3 builds upon the research presented in Chapter 2 by exploring server-
less services from other providers such as AWS and Azure. The comparative anal-
ysis primarily focuses on the common features shared by all three cloud providers.
After conducting the study, it was discovered that the Google Cloud Run service
is the most appropriate option for hosting the containerized application that is
heavily utilized in this study.

4.1 Conclusion
This research aimed to identify the key differences in system features, ease-of-use
usability, and performance between AWS, GCP, and Azure serverless cloud com-
puting systems. The first part of this study analyzed Google cloud run (server-
less), Google App Engine (serverless), and Google Compute Engine (server-based)
for their usability and performance of hosting a containerized application, we
found that google cloud run performed better as compared to other serverless
and server-based service options from google cloud platform itself.

The second part of the study compared AWS, GCP, and Azure serverless cloud
computing systems using the same application, it was found that GCP’s Cloud
Run provides the best range of memory and CPU options, supports more contain-
ers and instances, and has the highest concurrency per instance. Additionally, it
has the most user-friendly documentation. Google Cloud Run also performed the
best in terms of Container Request Latency and Distance Matrix API response
time. Meanwhile, Azure Container Apps had the lowest CPU memory utiliza-
tion. Based on these findings, GCP is recommended for beginners to serverless
computing, followed by Azure. AWS is better suited for experienced developers.
However, additional research is needed to determine which cloud providers are
best for other application domains.
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