
Texas A&M University-San Antonio Texas A&M University-San Antonio

Digital Commons @ Texas A&M University- San Antonio Digital Commons @ Texas A&M University- San Antonio

Computer Science Faculty Publications College of Business

2013

Call Graph Based Metrics to Evaluate Software Design Quality Call Graph Based Metrics to Evaluate Software Design Quality

H. Abandah

Izzat M. Alsmadi
Texas A&M University-San Antonio, ialsmadi@tamusa.edu

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Abandah, H. and Alsmadi, Izzat M., "Call Graph Based Metrics to Evaluate Software Design Quality"
(2013). Computer Science Faculty Publications. 7.
https://digitalcommons.tamusa.edu/computer_faculty/7

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please
contact deirdre.mcdonald@tamusa.edu.

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/7?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

1

Call Graph Based Metrics To Evaluate Software Design Quality

Hesham Abandah
1
 and Izzat Alsmadi

2

1
JUST University;

2
Yarmouk University

heshama@just.edu.jo, ialsmadi@yu.edu.jo

Abstract

Software defects prediction was introduced to support development and maintenance

activities such as improving the software quality through finding errors or patterns of errors

early in the software development process. Software defects prediction is playing the role of

maintenance facilitation in terms of effort, time and more importantly the cost prediction for

software maintenance and evolution activities.

In this research, software call graph model is used to evaluate its ability to predict quality

related attributes in developed software products. As a case study, the call graph model is

generated for several applications in order to represent and reflect the degree of their

complexity, especially in terms of understandability, testability and maintenance efforts. This

call graph model is then used to collect some software product attributes, and formulate

several call graph based metrics. The extracted metrics are investigated in relation or

correlation with bugs collected from customers-bug reports for the evaluated applications.

Those software related bugs are compiled into dataset files to be used as an input to a data

miner for classification, prediction and association analysis.

Finally, the results of the analysis are evaluated in terms of finding the correlation

between call graph based metrics and software products’ bugs. In this research, we assert

that call graph based metrics are appropriate to be used to detect and predict software

defects so the activities of maintenance and testing stages after the delivery become easier to

estimate or assess.

Keywords: Software testing, defects prediction, software metrics, coupling metrics, call

graph, software maintainability

1. Introduction

In software development, the human creativities and abilities play a significant role in

producing and directing the software product with the help of the tools and methodologies.

However, humans also form the main source of the errors and defects that occur in the

software and discovered before or after the delivery to the users. Producing software and

projects free of defects is impossible. However, software developers struggle to keep such

possible defects at minimum. Finding and fixing the defects and errors after delivery usually

cost a large amount of the project budget and resources specially if compared with detecting

them earlier. As such, trying to predict early the defects is valuable specially if detected

before the delivery of the software to the user where that can also help the project to success

in terms of cost and quality.

The coupling metrics play an important role in many development and maintenance

activities such as effort estimation, improving the quality of the software products, test

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

2

planning, anticipating and reducing future maintenance needs. These metrics assess the

quality of the software by supporting the quality related factors such as evaluating: error

proneness, changeability, and reusability. In those aspects, most relevant tools are either

available as independent tools or as part of a development environment to compute the

coupling metrics statically by tracing possible problems in the source code.

Call graphs represent the relationship between the modules of the software, reflect the

degree of complexity of the software, and help to find some of software metrics such as

coupling metrics.

One way to reduce cost through defects prediction is in using software metrics in general

and based on the call graph in particular to predict and improve possible problems in the

software design and hence code.

In this research, we tried to evaluate the effectiveness and the power of call graph based

metrics in the detection and prediction the defects in software products. A tool is developed to

generate call graph attributes and metrics from the evaluated open source projects. We

selected three applications: (JEdit 4.2, Velocity 1.4, Velocity 1.6). The selection was based on

two factors: First: open source projects and second projects that include users bug reports for

users actual evaluation of those software products. The call graph based metrics that are

programmed and evaluated in this paper include: LOC, FanIn, FanOut, SGBR, and IFC.

Some of those metrics are known and popular while others (i.e. SGBR and IFC) are

implemented in our tool based on their definition in some literature or research papers.

Details on those metrics will come later in this paper.

This paper is organized into the following sections; Section 2 introduces some studies and

researches related to the topic; Section 3 describes the steps of the methodology; Section 4

presents the analysis and the evaluation measurements adopted in the research; Section 5

shows the results of the experiments that were conducted; finally at Section 6 the conclusions

and inferences from the paper are presented.

2. Literature Review

Many empirical studies used the call graph model for developing ways or methods to

derive dependency metrics, especially code and size metrics. Each paper then proposed

ways to utilize call graph based dependency metrics to improve the software quality

through providing information for defect prediction and estimation. In the following

sections we will list some related work in each step that was taken in our project and

developed tool.

2.1 Call Graph Model

Many researchers studied software modeling and found that modeling techniques

were grouped into largely two categories: Graphical modeling techniques that use a

diagram with named symbols that represent the components and arcs that connect the

symbols and represent the relationships and other notations to represent the constrains.

Textual modeling techniques that use standardized notations and keywords to define

major aspects of the software products call graph.

Bohnet and Döllner (2006) [4] considered the process of extracting call dependencies

as one of the most important step in the reengineering process. Therefore they built a

tool for call graph extraction based on OINK framework. The tool provides in addition

to the call graph, a set of hierarchal data and information about the call type, methods

definitions , and output these information (data set) to imporTable formatted file.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

3

(Telea, et al., 2009) [10] made an enhancement for hierarchical edge bundling (HEB)

technique to be used as candidate visualization technique in their framework. So they

build an experiment to compare their enhancement (HEB) and Tulip graph visualization

framework , several large systems (Bison , Mozilla Firefox , and OINK) are analyzed to

conclude with the differences between the two visualization techniques , the result

viewed that (HEB) scheme perform better in typical comprehension tasks involving.

Honar and Jahromi (2010) [5] introduced a new framework for call graph

construction to be used for program analyses , they choose (ASM and Soot) as a byte

code reader for their environment to store information about the structure of the codes

such as classes, methods, files, and statements .

As a next step in the proposed framework three algorithms have been implemented

for call graph construction (CHA, RTA and CTA), finally the authors conclude with an

experimental study on a verity of source code programs in order to compare the two

byte code reader and the three supposed algorithms for call graph extraction.

2.2 Code Metrics Extraction

Analyzing the source code for any software and extracting code metrics is considered

as the main preprocess for the reengineering operation. This information provides the

maintainer a clear view about the complexity and difficulties of the software, as well as

it provides full insight about the way to dived the tasks of the maintainer to milestones

and phases in order to start the reengineering process easily. On the other hand many

researchers considered the code metrics and the information about system complexity as

a good defect tracker. They setup a number of hypothesis related with defect probability

and code metrics and try to prove the correlation between them, but the hottest topics in

this research field is how to define the set of metrics that we can considered them as the

optimal defect predictor. The researchers run many studies to define this set of metrics

each of them try to view it's set as the perfect one and give justifications for their

results.

As we can see, code metrics play a major role in many research fields and extracting

them accurately is important, many tools deployed to handle this extraction using

different approaches.

Baroni and Abreu, (2003) [2] presented a new framework for metrics extraction and

modeling the extraction data using UML Meta model called FLAME, they briefly

mentioned the main characteristics of FLAME in fact extraction and recommended

using them when firing a new tool for metrics extraction.

The authors introduce an approach to formalize the metrics design in optimal way,

FLAME functions are used to extract a well known sets of metrics which are: MOOD,

MOOD2, MOOSE, EMOOSE and QMOOD metrics (Baroni & Abreu, 2003) [2].

2.3 Defect Prediction from Source Code Metrics and System History

A number of approaches have been deployed for defect prediction, which they

depend on different criteria and information. Some researchers turn to finding bugs in

software code by analyzing the source code for that software and compute its

complexity. This way depends on extracting call graph based metrics from source code,

then use these metrics to decide which part (module) of the software code likely to be

defected. While other researchers prefer to use the system history to decide which part

of them has a big probability to be defected (useful when the application has many

release). They saw that the system history is more accurate for predicting defected parts

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

4

of the system more than the code complexity extraction predict. For these reasons

another studies drawn that support the two approaches together and use them both in

finding systems bugs.

Knab, et al., (2006) [7] used decision tree learners to compare the influence of

different metrics used in defect prediction and predicting defect densities. They

collected the data needed (source code metrics and bugs report) in the experiment from

seven version of open source code for Mozilla application. They applied J48 algorithm

in WEKA data miner on the data set, then they setup a number of experiments to test

their supposed hypothesis on defect predicting in software parts, and conclude with that

a simple tree learner can produce good results with various sets of input data, and they

find underlying rule for defect prediction.

Nagappan and Ball (2005) [8] used code churn measures to introduce a new

technique for prediction defect density. The idea was drawn with a hypothesis that

supposed that the code changes many times in the prerelease version then it will has a

big chance to be defected in the post release. The authors build an experiment on W2K3

release and the release of W2K3 service back and showed with its result that code churn

is a good defect predictor. Because they noticed that the increase of the code churn

measures leads to an increase on the defect density in any software. They conclude that

their metrics suit which are LOC churned , Deleted LOC , Files churned , Churn count ,

Weeks of churn , churn count , and file count can reported if the part of the system are

defected or not with accuracy of 89 % .

Software developers aim to evaluate the software in terms of cost of and quality

before delivering it to customers to predict and finding bugs and defects especially fo r

critical systems that need low percentage of defects along using the software, since the

consequence will be catastrophic in terms of cost or quality.

3. Methodology

Our methodology consists of six main phases, as shown in Figure 1, beginning by "Metric

computing tool implementation" in order to built tool that can read source code of an

application to compute some metrics related to coupling measurements. After that, the second

phase comes; which is "Call graph model generation" so that application model is utilized.

Proceeding to the third step, which includes "Call graph based metrics calculation" and we

compute some call graph based metrics for our application model. Then we go to the forth

step, where we "Data set generation", in this phase we also prepare data set consisted from

metrics values for each class in application. In the next phase; the fifth one, we "Data set

refinement with bug report" by assigning each record (class) in data set with its number of

bugs if it is exist. Finally, we finish by the phase of "Data set analysis and evaluation using

WEKA" for the purpose of evaluating its quality and find the correlation between its bug and

its call graph based metrics.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

5

Figure 1. Overall Methodology Diagram

The generated data set from the developed tool does not contain bug attribute for each

class since the tool focus to extract the call graph based metrics. This phase is responsible to

make some refinement on the CSV file. Firstly, the tool automatically fill the bug attribute

filed for each class by providing it previous CSV file for the same application under

investigation and contains the bug report for each class. The tool fill automatically the bug

attribute of each class by mapping the name of classes between our CSV file and the pre

worked CSV file. The source of previous CSV file gained from Promise Data Repository

which contains several data sets in CSV (Comma-Separated values) or ARRF (Attribute-

Relation File) format. These files created and prepared by researchers worked at the topic of

software defects prediction and we use in our research the bug attribute for these files which

related to the applications we use at our experiments. (Boetticher et al, 2007)[3].

4. Analysis and Evaluation

Before you begin to format your paper, first write and save the content as a separate text

file. Keep your text and graphic files separate until after the text has been formatted and

styled. Do not use hard tabs, and limit use of hard returns to only one return at the end of a

paragraph. Do not add any kind of pagination anywhere in the paper. Do not number text

heads—the template will do that for you.

After refine the generated CSV file that represent the data set of our research with bug

attribute then it will be ready to analyze and evaluate using tool WEKA 3.7.5 as data miner

tool. At this study we apply the following classifier algorithms such as J48 algorithm,

Logistic Model Trees (LMT) Algorithm and Support Vector Machine Algorithm (SMO)

classifier. The decision tree algorithms were chosen since we want to look at classifiers that

were easy to understand, so we could see how valid the correlation between call graph based

metrics and bug.

4.1 Evaluation Measures

The evaluation process of our C# testing tool depends on five matrices in term of call

graph based metrics measurement. The five matrices shown in Table 1 are line of code, FanIn,

FanOut, call graph based ranking (CGBR), information flow complexity (IFC). The metrics

value for each type (LOC, FanIn, FanOut, CGBR, and IRC) depends on the functions that

extracted from the application under investigation by which the higher metric value type

achieves a higher complexity value. The values of metrics related to class level are computed

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

6

by find the summation of all corresponded metrics to function level. For example: if we have

10 functions are included at such class and each function has FanIn metrics value equal 1 then

the class has FanIn metrics value equal the summation of all FanIn metrics values related to

functions of the class which equal to 10.

Table 1. Call Graph Based Matrices Measurements

Metric Type Metric Matrix

LOC # of execuTable and non-commented line code for each function

Fan In # of callee function list

Fan Out # of called function list

CGBR
(1 – d) + d * ∑i CGBR(Ti)

 C(Ti)

IFC IFC(M) = LOC(M) + [fan-in(M) x fan-out(M)]2

The five metrics we use at this research are related to size of the software or related to

coupling and dependency between the components and functions of the application under

investigation. LOC metric value represents the number of execuTable and non-commented

lines of code. FanIn metric value for such function represents the number of function calling a

given function. FanOut metric value for such function represents the number of function

being called by a given function. CGBR metric is an abbreviation to call graph based ranking

and proposed by (Turhan, et al., 2008), this metric depends on the page ranking algorithm

that used by almost of the search engines, where the ranking methodology is adopted to

functions of the software. This metric hypothesis that more frequently used functions and less

used modules should have different defects and bugs characteristic. The equation of the used

to compute CGBR value is listed at Table 1. the value of d at the equation represents damping

factor and refer to probability of such function being called or used and can be computed as

the ratio of actual function calls to all possible function calls. CGBR(Ti) is the call graph

based rank of module Ti which call for given function. C(Ti) is the number of outbound calls

of function Ti. IFC metric is abbreviated to information flow complexity (IFC) and represents

the measurement of the total level of information flow of given function. The value of this

type of metric depends on the values of metrics LOC, FanIn, and FanOut for the given

function and the equation required to compute the value is listed at Table 1

4.2 Principle Component Analysis using SPSS

The purpose of this analysis is to show how metrics in developed tool correlate to each

other. Table 2 described PCA analysis for call graph based metrics in developed tool results

in 2 orthogonal dimension components were identified from 5 call graph based metrics that

have Eigen value more than 1. According to this, medium redundancy presented among these

measures. In the Table 2, Eigen values, the variance of the data set explained by the PC (in

percent), and the cumulative variance are provided for each PC. Values above 0.6 are set in

boldface. The 2 PCs capture 89.963% of the variance in the data set.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

7

Table 2. Rotated Component Matrix for Developed Tool

 Component

1 2

Eigenvalue 3.475 1.023

% of Variance 69.498 20.465

Cumulative % 69.498 89.963

CGBR .961 -.115

LOC .930 -.115

IFC - .025 .966

FanIn .868 .112

FanOut .961 .011

The PCs are interpreted as follows:

 PC1: CBGR, LOC, FanIn, and FanOut are coupling and size metrics. We have size

and coupling metrics in this dimension. This shows that there are classes with high

internal methods (methods defined in the class) and external methods (methods called

by the class). This means coupling is related to number of methods and attributes in

the class.

 PC2: IFC measure the total level of information flow of a module and reflect the

degree of flow complexity among classes.

4.3 Experiments

At the first step, we collect the source code for the applications of the study, JEdit 4.2

application, Velocity 1.4 application, and Velocity 1.6 application. We enter the source code

for each application to a developed C# tool in order to generate call graph model for each

application. After that, the developed tool computes the call graph based metrics for each

function extracted. Then compute the same metrics to classes and output the results into CSV

file that represent the data set to be tested. The next step is refining the data set with bug

report related to each application under investigation. Finally, evaluate the value of the

metrics in terms bug and defect detection

The format of the data set should be ARRF file, since the classifier algorithms such as J48

algorithm and M5P algorithm accepts only the files with that format. The accuracy is

calculated with ten-fold cross validation. The attributes of the file listed in the Figure 2.

Figure 2. Attributes of the Data Set

The attribute bug is classified into three categories based on the number of bugs for each

class. Table 3 illustrates all types of bugs.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

8

Table 3. Categories of Bugs

TABLE I. Bug

Categories

TABLE II. Metric Matrix

One
VL == 0 errors / L == 1 error / M == 2 errors / H == 3 errors /

VH == > 3 error

Two L == 0 errors / M == 1 - 2 errors / H == > 2 errors

Three False == no errors / True == exist errors

The results of experiments show that there is an obvious correlation between the call graph

based metrics and the bug and defects of the application. Table 4 will summarize all the result

of nine experiments.

Table 4. Summary of the Experiments Results in Terms of Bug Categories

Bug Category
Category One Category Two Category Three

Application name

JEdit 4.2 80.4082 % 81.6327 % 86.1124 %

Velocity 1.4 60.1227 % 72.3926 % 80.8916 %

Velocity 1.6 67.052 % 66.474 % 72.8324 %

As we show in the Figure 3 that correlation between bug and the call graph based metrics

will be high when we split the bug class into small number of categories, like category three

that split the bug class into two categories. So we take category three as criteria to compare

the J48 classifier on the applications under investigation output to other classifier output such

as Logistic Model Trees (LMT) classifier and Support Vector Machine Algorithm (SMO)

classifier.

Figure 3. Summary of the Experiments Results in Terms of Bug Categories

As shown in Table 5 and Figure 4 the results of three classifier algorithm are

approximately have similar values, where that leads us to conclude that correlation is very

high between the call graph metrics and bugs of the application under investigation.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

JEdit 4.2 Velocity
1.4

Velocity
1.6

Category
One

Category
Two

Category
Three

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

9

 Table 5. Summary of the Experiments Result in Terms of Algorithm Types

Classifier algorithm
J84 LMT SMO

Application name

JEdit 4.2 86.1124 % 84.4898 % 82.8571 %

Velocity 1.4 80.8916 % 80.9816 % 75.6401 %

Velocity 1.6 72.8324 % 71.0983 % 66.474 %

Figure 4. Summary of the Experiments Result in Terms of Algorithm Types

Finally, we make some normalization to our data set by excluding the non public functions

such as private and protected functions from the computation of the call graph metrics for the

applications under investigation, and we list the results of analysis at Table 6.

Table 6. Summary of the Experiments Results of Data Set Excluding Non-
public Functions

Classifier algorithm
J84 LMT SMO

Application name

JEdit 4.2 86.9338 % 85.7143 % 83.2653 %

Velocity 1.4 85.8896 % 88.9571 % 75.6401 %

Velocity 1.6 72.8324 % 70.5202 % 67.6301 %

As we show in the Table 6 and Figure 5 the results of three classifier algorithm are

approximately have similar values, where that leads us to conclude that correlation is very

high between the call graph metrics that computed without non public functions and bugs of

the application under investigation.

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

10

Figure 5. Summary of the Experiments Results of Data Set Excluding Non-
public Functions

After comparing between the results in Table (5) and results in Table (6), we show that

excluding the non-public functions such as private and protected functions in order to

compute the call graph based metrics for the classes of the application under investigation

will raise the percentage of the supposed correlation between call graph based metrics and

bugs.

5. Conclusion

In this paper, we present the effectiveness and the power of call graph based metrics in

detection and prediction the defects in software through our developed tool. We choose three

application (JEdit 4.2, Velocity 1.4, Velocity 1.6). We extract the call graph based metrics

such LOC, FanIn, FanOut, SGBR, and IFC from the selected applications and evaluated their

correlation according to many categories of bugs of the applications. All these experiments go

together on the same direction, which is discovering how much the extracted call graph

metrics are necessary and important in lightening the obstacles and problems of software that

may arise after delivery phase, which is an expensive and time consumer phase. Therefore, it

will be more effective to predict them and find their solutions earlier, if they occur at any time.

The results of our research improve the hypothesis of correlation between call graph based

metrics and bugs in software design. The highest percentage of correlation was shown in

results of the analysis JEdit 4.2 application using J48 algorithm classifier with metric

correlation 86%, while the metric correlation resulted in analysis Velocity application with its

versions 1.4 and 1.6 was 81% and 73% respectively. In addition, the results show that

correlation between bugs and the call graph based metrics will be high when we split the bug

class into small number of types, like category three that split the bug class into two types. In

addition, the results show that excluding non- public functions such as private and protected

functions in order to compute the call graph based metrics for the classes of the application

under investigation will raise the percentage of the supposed correlation.

By this approach, we proved that call based metrics are appropriate criteria for helping the

maintenance and developing stages to be more effective stages and less costly at the same

time, especially for those systems that are very complex and hardly to understand.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

J84

LMT

SMO

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

11

References

[1] N. Azeem and S. Usmani, “Defect Prediction Leads to High Quality Product”, Journal of Software

Engineering and Applications, vol. 4, no. 11, (2011), pp. 639-645.

[2] A. L. Baroni and F. B. Abreu, “A Formal Library for Aiding Metrics Extraction”, 4th International Workshop

on Object Oriented Reengineering WOOR2003 at ECOOP2003, (2003) Dramstandt, Germany.

[3] G. Boetticher, T. Menzies and T. Ostrand, “PROMISE Repository of empirical software engineering

data”, West Virginia University, Department of Computer Science, (2007), http://promisedata.org/?cat=11

repository.

[4] J. Bohnet and J. Döllner, “Visual exploration of function call graphs for feature location in complex software

systems”, Proceedings of the 2006 ACM symposium on Software visualization SoftVis 06, vol. 1, (2006), pp.

95 – 104, ACM Press, http://portal.acm.org/citation.cfm?doid=1148493.1148508.

[5] E. Honar and M. Jahromi, “A Framework for Call Graph Construction”, Student thesis At School of

Computer Science, Physics and Mathematics, (2010).

[6] M. Kaur, P. Batra and A. Khare, “Static Analysis and Run-Time Coupling Metrics”, International Journal of

Information Technology and Knowledge Management, vol. 3, no. 2, (2010), pp. 707-710.

[7] P. Knab, M. Pinzger and A. Bernstein, “Predicting defect densities in source code files with decision tree

learners”, Proceedings of the 2006 international workshop on Mining software repositories, (2006) May 22-

23, Shanghai, China [doi>10.1145/1137983.1138012].

[8] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system defect density”,

Proceedings of the 27th international conference on Software engineering, (2005) May 15-21, pp. 284-292, St.

Louis, MO, USA [doi>10.1145/1062455.1062514].

[9] W. Prins and P. Darbyshire, “Call-Graph Based Program Analysis with .Net”, In Procs of the IRMA

International Conference, (2007), pp. 794-798.

[10] A. Telea, H. Hoogendorp, O. Ersoy and D. Reniers, “Extraction and visualization of call dependencies for

large C/C++ code bases: A comparative study”, 2009 5th IEEE International Workshop on Visualizing

Software for Understanding and Analysis, (2009), pp. 81-88, IEEE, http://ieeexplore.ieee.org/lpdocs/epic03-

/wrapper.htm?arnumber=5336419.

Authors

Hesham M Abandah

Hesham Abandah is a master student graduate in the computer

information systems department at Yarmouk University. He works in

Jordan University of Science and technology (JUST). His research

interests are focused on software engineering in general, software testing

and metrics in particular.

Izzat M Alsmadi

Izzat Alsmadi is an associate professor in the department of computer

information systems at Yarmouk University in Jordan. He obtained his

Ph.D degree in software engineering from NDSU (USA). His second

master in software engineering from NDSU (USA) and his first master in

CIS from University of Phoenix (USA). He had a B.sc degree in

telecommunication engineering from Mutah university in Jordan. He has

several published books, journals and conference articles largely in

software engineering different fields.

http://lnu.diva-portal.org/smash/record.jsf?searchId=1&pid=diva2:327859
http://doi.acm.org/10.1145/1062455.1062514
http://ieeexplore.ieee.org/lpdocs/epic03-/wrapper.htm?arnumber=5336419
http://ieeexplore.ieee.org/lpdocs/epic03-/wrapper.htm?arnumber=5336419

International Journal of Software Engineering and Its Applications

Vol. 7, No. 1, January, 2013

12

	Call Graph Based Metrics to Evaluate Software Design Quality
	Repository Citation

	Journal Paper Format

