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chitosan encapsulation of 
ferrateVi for controlled Release 
to Water:Mechanistic insights 
and Degradation of organic 
contaminant
Bo-Yen chen1, Hsuen-Wen Kuo1, Virender K. Sharma  2 & Walter Den3*

tetraoxy-anion of iron in +6 oxidation state (FeVio4
2−, feVi), commonly called ferrate, has shown 

tremendous potential as a green oxidative agent for decontaminating water and air. encapsulation of 
solid potassium salt of ferrate (K2feo4) circumvents the inherent drawbacks of the instability of ferrate 
under humid conditions. in the encapsulated strategy, controlled release without exposing the solid 
ferrate to the humid environment avoids self-decomposition of the oxidant by water in the air, and the 
ferrate is mostly used to decontaminate water efficiently. This study demonstrated the formulation 
of oxidative microcapsules with natural materials present in chitosan, whose release rate of the core 
material can be controlled by the type of intermediate hydrocarbon layer and the pH-dependent 
swelling of chitosan shell. the pH played a pivotal role in swelling chitosan shell and releasing the core 
oxidant. in a strong acidic solution, chitosan tended to swell quickly and release feVi at a faster rate 
than under neutral conditions. Additionally, among the several long-chain hydrocarbon compounds, 
oleic acid exhibited the strongest “locking” effect when applied as the intermediate layer, giving rise to 
the slow release of feVi. coconut oil and mineral oil, in comparison, allowed feVi to penetrate the layer 
within shorter lengths of time and showed comparable degrees of degradation of target contaminant, 
methylene orange, under ambient temperature and near-neutral conditions. These findings have 
practical ramifications for remediating environmental and industrial processes.

The natural abundance of iron renders the iron-based technologies a highly desirable approach for decontaminat-
ing the environment because they do not introduce synthetic material or harmful by-products foreign to natural 
environment1–5. In particular, simple tetra-oxy anion of high-valent iron (FeVIO4

2−, FeVI), usually called ferrate, 
has exhibited a strong oxidative power and effectiveness for treating a wide range of environmental contami-
nants6–10. FeVI possesses a greater redox potential in acidic solutions than other common oxidizing agents (hydro-
gen peroxide, hypochlorite, perchlorate) for disinfection11,12 and depolluting water13. As a microbial disinfectant, 
FeVI had demonstrated 3-log kill rates of total coliforms and chlorine-resistant bacteria from the genera Bacillus 
and Mycobacterium14, and required less time to inactivate Escherichia coli at lower dosages than hypochlorite15. 
The acidity of FeVI species plays a prominent role in its effectiveness to inactivate E. coli, as the rate constant of E. 
coli inactivation by FeVI nearly doubles when pH reduces from 8.2 to 5.616. Researchers have also demonstrated 
the multiple roles of FeVI as a coagulant and oxidant in removing metals, nutrients, radionuclides, humic acids17–21 
and emerging micropollutants (e.g., estrogenic hormone22,23, antibiotics24,25, and other pharmaceutical ingredi-
ents26) in water. Recently, studies have shown that the activated ferrate shortened the reaction time for transform-
ing emerging pollutants that can only be partially be oxidized by FeVI (or un-activated ferrate)27–31.

Despite being a powerful oxidant, the practical applications of ferrate are very limited. The studies demon-
strating ferrate as an effective chemical to decontaminate have used a solid K2FeO4, which is unstable under 
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humid and lit conditions. In large-scale and long-term use in applications, the solid K2FeO4 must be stored under 
special conditions with no light exposure and no water in the air (or anoxic conditions)32,33. These conditions 
restrict applications of ferrate to treat environmental pollutants under ambient conditions. In the present paper, 
we have made a major stride to overcome issues associated with the instability of ferrate by using the encap-
sulation strategy that could store a solid salt of K2FeO4 without exposure to environmental stimuli (e.g., light, 
moisture, oxygen). Additionally, encapsulation could release the ferrate in a controlled manner to the intended 
applications. Furthermore, encapsulation was carried out by developing an architecture that encapsulates ferrate 
with natural-derived material in chitosan.

Studies on encapsulation of ferrate in the literature are scant34,35. Only two studies have been reported on 
encapsulating ferrate, which used paraffin wax as a shell material. Paraffin is a mixture of saturated hydrocar-
bons and does not fall in the category of green material. Therefore, we searched for natural material and have 
selected chitosan. We hypothesised that the molecular structure of chitosan could be altered to control the 
release rate. Additionally, chitosan is chemically stable (e.g., high thermal stability up to 280 °C) and owns a 
distinct advantage over other encapsulating agents: the possibility to establish covalent or ionic bonds with 
the crosslinking agents, hence building a network structure to retain the active substance. Consequently, these 
chemical bonds carry advantages regarding controlled release36,37. Ionically crosslinked microparticles form 
non-permanent and reversible networks, allowing chitosan microparticles to exhibit a higher swelling sensi-
tivity to pH changes as compared to the covalently crosslinked counterpart. This property extends its potential 
application since dissolution can occur in extremely acidic or basic pH conditions38. Crosslinking agents like 
tripolyphosphate, citrate, sulfate, and phosphate, among others, are used39,40. To avoid unintended reaction 
between the active reagent (FeVI) and the binder (chitosan), an intermediate layer to stabilise FeVI may be 
necessary.

The specific objectives of the current paper are: (i) to evaluate the effectiveness of various types of oleochem-
ical (oleic acid and coconut oil) and petrochemical (mineral oil) agents as the buffering medium; (ii) to examine 
the pH effect on the release behavior of FeVI from microencapsulation; and (iii) to demonstrate the functionality 
of the encapsulated FeVI to remove contaminants by investigating degradation of methyl orange as the model 
contaminant.

Results and Discussion
encapsulation parameters and material characterization. The parameters investigated in the encap-
sulation studies included the concentration of chitosan in 1% acetic acid solution, the type (i.e., NaOH and KOH) 
and concentration of the hardening solution, and the kind and concentration of additives used as the buffering 
agent. The resultant capsules were visually examined to assess the optimum combination of chemicals to be used. 
In brief, chitosan concentration less than 1% did not yield sufficient wall formation to encapsulate FeVI com-
pletely, resulting in a rapid decomposition of FeVI to FeIII. Chitosan concentration at 1.0% and 1.5% provided the 
improved formation of the wall. The concentration at 2.0%, however, yielded the incomplete solid wall after hard-
ening. Furthermore, NaOH generally performed better as a hardening agent for chitosan than KOH, with 10% 
and 15% as an appropriate range of concentration. Among the buffering agent, the fatty acid organic molecules 
in oleic acid were favorable to form a protective layer around solid particles of ferrate. Comparatively, long-chain 
alkanal (aldehyde) was not able to have a protective layer.

The SEM images, shown in Fig. S1, of the encapsulated K2FeO4 samples revealed that the thickness of the wall 
material fabricated with 0.5% chitosan solution was about 0.31 mm, and those with 1.0% and 1.5% chitosan solu-
tion was about 0.375 mm. The SEM image that the encapsulated ferrate cladding material was exposed to change 
the pH of the hardening solution, resulting in the coacervation between the chitosan and the alkaline solution 
to produce a crystalline material. The energy dispersive spectra further verified the presence of a higher level of 
carbon (57.2% wt mainly due to chitosan, oleic acid, and carbon tape artifact), iron (16.5% wt) and potassium 
(11.1% wt). The remaining elements are sodium (9.1% wt due to the use of hardening solution by sodium hydrox-
ide) and oxygen (6.1% wt).

Applying different types of buffering agents appeared to result in slightly different pellet sizes. With oleic acid, 
the capsule size ranged between 0.4 and 0.5 mm. The SEM image clearly shows the formation of chitosan shell 
wall with a typical thickness of around 0.1–0.2 mm. Addition of a surfactant to enhance mixing between FeVI and 
oleic acid resulted in smaller capsules (0.2–0.3 mm), without a clear distinction between the shell wall and the 
inner content.

With coconut oil being the buffering agent, the size of the capsules yielded was similar to those observed in 
FeVI/OA/chitosan using Tween 80. A two-step process was performed to synthesise the capsules, namely a first 
step to mix FeVI with liquid coconut oil before hardening by temperature reduction, and a second step to further 
coated with chitosan. While the image shows the transparent oily layer covering solid K2FeO4, the freeze-dried 
capsule did not yield a clear presence of shell wall of chitosan. The result indicates that the dip-coating method 
applied in the second step may need to be modified to ensure the attachment of chitosan to the droplets from a 
shell wall.

The XRD pattern (Fig. S2) of the encapsulated ferrate contains the same characteristic peaks as that of K2FeO4 
with an orthorhombic unit cell possessing the spaces group D2h, but with a lower intensity. The XRD characteris-
tic peaks of as-obtained K2FeO4 at 2θ = 20.9° and 30° correspond to the (111) and (031) phases of the crystalline. 
The XRD patterns of standard chitosan procured from the manufacturer show similar peaks as the peaks of 2θ 
between 18° and 20° were related to the crystal in chitosan structure41.

The transmittance FT-IR spectra (Fig. S3) of the as-received K2FeO4 and the encapsulated ferrate samples 
include a primary peak at 825 cm−1, which is characteristic of FeO4

2− attributed to the stretching vibrations of the 
FeO bond. The spectra of chitosan show a broad absorption band in the region of 3,450 cm−1 that corresponds to 
the OH stretching vibrations of water and hydroxyls and the NH stretching vibrations of the free amino group. 
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The bands observed at 2,924 and 2,852 cm−1 correspond to the asymmetric stretching of CH3 and CH2 in the 
chitosan. The intensive peak at 1,629 cm−1 corresponds to the bending vibration of NH2 characteristic of chitosan 
polysaccharide, indicating the occurrence of deacetylation41.

Formation and stability of capsules with different buffering agents. The reaction between FeVI and 
chitosan was verified by titrating 0.5% (w/v in acetic acid) to a solution containing up to 400 mg/l of K2FeO4. The 
linear correlation (Fig. S4) between the amount of chitosan needed to reduce FeVI to FeIII indicates a stoichiomet-
ric reaction and justifies the necessity to add a buffer layer between the wall material and the oxidant. Each unit 
of chitosan molecule contains glucosamine (Glc-NH2) linked by β(1,4) bond (hence forming 1,4-β-D-glucoside 
bond). To the best of our knowledge, there has not been any literature available concerning the chitosan oxidation 
by ferrate. Depolymerization of chitosan molecules via the breakage of the β(1,4) bonds, however, is a strong 
possibility given the previous works reported involving the use of other oxidants such as ozone and hydrogen 
peroxide42,43. When exposing the as-prepared encapsulated ferrate pellets in ambient air at a controlled temper-
ature of 25 °C, the amount of potassium ferrate in the OA-buffered chitosan pellets remained consistent (Fig. S5) 
over a period of 20 days, suggesting that the encapsulation could effectively preserve ferrate in the ambient air 
environment for at least 20 days. Some degree of variability existed because the actual amount of potassium fer-
rate contained in each pellet varied. We estimated an amount of K2FeO4 between 20 mg to 40 mg was covered in 
the chitosan/buffer material.

As for the stability of FeVI in the three types of buffering medium, Fig. 1 shows the amount of FeVI remained 
in a buffering agent (i.e., storage capacity) as a function of time. The results indicate that there was essentially no 
release of FeVI observed with OA being the buffer, even after 120 min of exposure time. This result is consistent 
with the open-air exposure study reported earlier where the OA-buffered chitosan pellets remained stable after 
20 days. OA is the most abundant form of monounsaturated fatty acid derived from plants and animals, and the 
β-oxidation (β position of a two-carbon bond) pathway of OA enzymatically has been of biochemical important 
in food and medical sciences and chemocatalytically in the chemical process using oil and fats as the feedstock 
for renewable energy44. The result also implies that OA appears to be resistant to ferrate oxidation and hence can 
serve as a good storage medium for FeVI. The addition of the surfactant in an attempt to enhance the dissolution 
of OA in the chitosan solution did not improve the release of FeVI from OA. In comparison, FeVI gradually releases 
when entrapped by MO, as about 90% K2FeO4 concentration remained after placing the mixture in water, and 
about 75% remained after 120 min. The addition of the surfactant to the MO mixture accelerated the release of 
K2FeO4. For CO as the buffer medium, about 40% of the entrapped FeVI was lost after 60 min and 60% lost after 
120 min. Both liquid and solid form (droplet) performed similarly. CO differs from OA medium in that CO con-
tains mostly saturated fatty acids as opposed to the large fraction of monounsaturated fatty acids in OA. Based 
on the chemical release study, buffering FeVI with media containing saturated fatty acids are prone to short-term 
release as compared to those with unsaturated fatty acids. With their variation of molecular structure, these 
hydrocarbon media may display the potential functionality to regulate the release rate of K2FeO4.

It is noteworthy to mention that MO is a lighter version (i.e., lesser molecular weight) of paraffin (solid) and 
petroleum jelly (semi-solid), all of which are a by-product of refining crude oil to make gasoline and other petro-
leum products. The previous studies involving the use of paraffin wax as the wall material encapsulating K2FeO4 
revealed the gradual release of FeVI over time, losing about 15% of entrapped after 24 h35. We did not perform a 
release experiment for longer than two hours. Our results using MO to trap K2FeO4 largely agreed with theirs but 
exhibited a faster release considering the lesser density of MO as compared to paraffin wax.

Figure 2 shows the degree of removal of methyl orange (initial concentration of 5 mg/l) using different dos-
ages of K2FeO4 (from 0 to 36 mg/l) entrapped in OA, CO, and MO. Though the oxidative mechanism was not 
studied in this work, it was hypothesised that the decoloration of methyl orange solution during FeVI oxidation 
was a result of the bond cleavage of the chromophore groups (–N=N–)45,46 which are functional to the color 
of the appearance of methyl orange molecules. The intermediate products during the decomposition reported 
in the literature47 include N,N-dimethylbenzylamine (C8H11N), N,N-dimethyl-p-phenylenediamine (C8H12N2) 
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Figure 1. The storage capacity of oleic acid (◇), coconut oil (liquid, ; droplet, ×), and mineral oil (○) as a 
function of time.
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and sulfanilic acid (C6H6NSO3). These intermediate compounds may be further oxidised into small molecule 
organics or mineralised. The pseudo-first-order reaction rate constants are 0.044/min, 0.074/min, 0.110/min, and 
0.165/min for K2FeO4 dosage of 6 mg/l, 12 mg/l, 24 mg/l, and 36 mg/l (Fig. S8), respectively The linear increase 
in the value of the kinetic constant with the K2FeO4 dosage suggests that the experiments were predominantly 
reaction-limited (i.e., the rate of reaction markedly increases with higher FeVI content).

The entrapped K2FeO4 with MO and CO also yielded high degrees of removal of methyl orange, as seen 
in Fig. 2 (the time-dependent removal profiles of methyl orange using the various K2FeO4 dosages are shown 
in Fig. S9). For all challenged methyl orange concentrations, K2FeO4/MO system consistently produced higher 
removal rates than K2FeO4/CO, with the gap widening as the initial concentration of methyl orange increased. 
These results suggest two important properties: (i) The extent of methyl orange removal reflects the FeVI storage 
capacity displayed in Fig. 1, which shows an enhanced retainment with MO as compared to CO. (ii) Noting the 
rates of the methyl orange removal only marginally less than those obtained with direct FeVI oxidation (i.e., bare 
K2FeO4), both MO and CO were capable of retaining a large fraction of the oxidative power of FeVI, exhibiting the 
suitability to act as the buffering medium of choice when synthesizing FeVI capsules. Contrarily, when entrapped 
with OA, there was a very limited degree of oxidation of methyl orange. This result was also consistent with that 
in the FeVI release study mentioned earlier, where very little FeVI was detected after 120 min. Given the lack of 
chemical reactions between FeVI and the other two types of nonpolar, long-chain hydrocarbon media, it could be 
inferred that oleic acid was unlikely to react with FeVI but prevented it from releasing within the length of time 
tested.

Removal of methyl orange by chitosan-encapsulated feVi. As the chitosan-encapsulated pellets 
were exposed in methyl orange solutions, FeVI diffuses through the buffering medium, and the chitosan shell is 
subject to oxidation of methyl orange. Fig. 3 shows a typical set of methyl orange removal rate as a function of 
time for the various buffering media at pH 6.5. Pellets with OA as the buffering medium exhibited less than 6% 
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Figure 2. The removal of methyl orange after 20 min of reaction with the various dosage of K2FeO4 entrapped 
by MO, CO, and OA without chitosan encapsulation (initial pH at 6.5).
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Figure 3. The removal of methyl orange as a function of time by FeVI encapsulated pellets using the various 
types of intermediate buffering media. The initial pH value was 6.5 and the initial methyl orange concentration 
was 5.0 mg/l.
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of methyl orange degradation, regardless of whether OA was emulsified. Pellets prepared with MO as the buffer 
medium showed significant removal of methyl orange, achieving about 80% removal efficiency after 20 min. 
Those prepared with CO also resulted in > 30% removal. These results were consistent with the FeVI release study 
demonstrating that the rate of release of FeVI was regulated by its buffer medium. Furthermore, it is noted that all 
time-dependent profiles display a near S-shape pattern, characterised by an inert starting period (i.e., initial five 
minutes) in which a limited extent of methyl orange removal can be observed. This was followed by a rapid rate of 
increase of the methyl orange removal in the case of the chitosan/MO/K2FeO4 and chitosan/CO/K2FeO4 pellets, 
before reaching a state of equilibrium. This “three-stage” pattern of the removal profiles was distinct from those 
observed from the time-dependent FeVI release profiles (Fig. S9) which did not exhibit the initial lag period stem-
ming from the presence of chitosan. We therefore propose a working hypothesis on the mechanism of FeVI release 
and oxidation that is schematically presented in Fig. 4 and delineated as follows: Initially, as the encapsulated 
pellets are exposed to a solution containing methyl orange, the methyl orange adsorb onto the surface of the chi-
tosan shell, which gradually begins swelling up (Stage I). FeVI particles then diffuse out of the buffer layer by the 
concentration gradient and migrate along the swelled surface of chitosan to attack the adsorbed methyl orange 
molecules. Some particles may find their way into the solution and oxidise aqueous phase molecules (Stage II). As 
the available FeVI depletes, reaction with methyl orange molecules slows down, and the aqueous phase concentra-
tion eventually reaches a new state of adsorption equilibrium with chitosan shell.

Effect of pH on methyl orange removal by FeVi pellets. A multitude of factors are involved with the 
removal of methyl orange under different pH values, including: (i) chitosan adsorptivity of methyl orange; (ii) 
swelling effect of chitosan; and (iii) FeVI reaction with methyl orange once released from the capsules. Chitosan 
has been known as an excellent natural sorbent for a wide range of environmental contaminants and achieved 
enhanced adsorption capacities under the acidic environment48,49. Its role as the outer shell of the encapsulation 
can also be partially responsible for the reduction of methyl orange in solutions. To verify, we conducted a sepa-
rate set of study to measure the adsorptivity of methyl orange on chitosan, assuming the protonated amino groups 
on chitosan molecules can play an important role in covalent link with the sulfate branch on a methyl orange mol-
ecule (Fig. S6). Figure S7 shows a set of typical adsorption equilibrium profiles of methyl orange at two different 
initial concentrations (5 mg/l and 30 mg/l) on chitosan. The adsorption parameters obtained for the Langmuir 

Figure 4. Schematic presentation of the proposal mechanism of methyl orange oxidation by encapsulated 
pellets.

Langmuir isotherm Freundlich isotherm

pH KL (mg/g) b R2 1/n KF ((mg/g)/(l/mg)n) R2

5.0 20.5 0.0005 0.992 0.9337 0.0495 0.981

6.5 9.61 0.0037 0.988 0.9105 0.0428 0.960

10 8.81 0.0051 0.995 1.0168 0.0096 0.989

Table 1. Adsorption isotherm constants calculated from isotherm curves Langmuir isotherm equation: 
=

+
q ;e

K bC
bC1

L e

e
 qe is the surface-bound mass (mg/g); Ce is the aqueous-phase adsorbate concentration (mg/l); KL is 

the adsorption capacity (mg/g); b is a dimensionless constant. Linearised form: = +( )q C K b K
1 1 1 1

e e L L
. Freundlich 

isotherm equation: =q K C ;e F e
n1/  KF and n are both empirical constants. Linearised form: 

= +q K Clog log loge F n e
1
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isotherm model and the Freundlich isotherm model under different pH values are summarised in Table 1. The 
adsorption equilibrium data fit well with either model through regression analyses using the linearised form of 
the model equations. With KL representing the adsorption capacity for the Langmuir isotherm model, an increase 
in the pH value resulted in reduced adsorption capacity. The decreasing KF value also expresses similar results in 
the Freundlich isotherm. The theoretical maximum adsorption capacity (KL) was pH-dependent, with a value of 
20.5 mg/g at pH 5.0, 9.61 mg/g at pH 7.2, and 8.81 mg/g at pH 10.0. Deprotonation of the amino ions on chitosan 
molecules in more basic conditions may reduce the availability of the ionic sites that are favorable for adsorption 
of methyl orange molecules.

Chitosan with a pKa of 6.3 is polycationic when dissolved in acid and presents –NH3
+ sites. At a pH value 

below 5, almost 90% of active sites were protonated, while at pH 4, more than 99% were protonated50. The increase 
in the positive charges on the chitosan molecule, in turn, causes a strong electrostatic repulsive force with adjacent 
molecules, thereby stretching a chitosan molecule. At a higher pH value, the hydroxyl ions are linked to the amino 
groups by deprotonation and consume the ionic sites on chitosan. Therefore, exposing chitosan in acidic condi-
tions typically induces a greater extent of the swelling effect, which plays an important role in controlling the rate 
of release of the active ingredient entrapped in chitosan outer wall.

We have already demonstrated that the protonation of amino functional groups under acidic conditions 
would favor the adsorption of methyl orange via the ionic bonding with the sulfate group in a methyl orange 
molecule (point i). Similarly, protonation of amino groups also generates a repulsive electrical force that stretches 
the bonds in a chitosan molecule and causes a greater swelling effect (point ii).

For oxidation of methyl orange (point iii), the rate constants of reactions of these compounds with ferrate 
usually decrease with an increase in pH in alkaline media. Sharma reported the rate constants for the reactions 
of HFeO4

− and HFeO4
2− with the substance were correlated with 1-e− and 2-e− reduction potentials in order 

to understand the mechanisms of the reactions. FeV generally oxidises compounds by a 2e− transfer step. The 
reaction of FeVI with compounds may be characterised most commonly by (i) a 1-e− transfer step from FeVI to 
FeV, followed by a 2-e− transfer to FeIII as the reduced product (FeVI → FeV → FeIII), and (ii) 2-e− transfer steps 
(FeVI → FeIV → FeII). Oxygen atom transfer to the compounds may occur through the involvement of either FeVI 
or FeV in the oxidations carried out by ferrate20,51. In summary, exposing the chitosan encapsulated pellets under 
an acidic condition strongly favors the removal of methyl orange because chitosan adsorbs better and swells bet-
ter, while FeVI oxidises methyl orange faster.

To study the influence of pH on the reaction of encapsulated FeVI with methyl orange, a fixed dosage of the 
encapsulated FeVI was mixed with methyl orange solution (5 mg/l) at pH values of 2.2, 5.0 and 7.2 and contin-
uously monitored over a 20-min period. As shown in Fig. 5 using chitosan/CO/FeVI system for illustration, the 
degree of FeVI released from the pellets increased markedly with decreases in the pH value. We observed about 
50% FeVI released after 20 min at a pH of 7.2, and more than 60% and 80% releases for a pH value of 5.0 and 2.2, 
respectively. It is worth noting that, while these FeVI-release temporal profiles generally followed the S-shape 
pattern discussed earlier, the initial lag stage (Stage I) at pH 2.2 was not as pronounced as they were for the pH 
values of 5.0 and 7.2. In fact, chitosan swelling appeared to have occurred immediately after exposing to the solu-
tion at pH 2.2 and might have also allowed an accelerated diffusion of FeVI particles through the buffer layer. The 
behavior of the pH-controlled release was also reflected in the methyl orange removal patterns shown in Fig. 6, 
corresponding to the identical experimental conditions as in Fig. 5. The experimental results show a faster rate 
and a higher degree of removal of methyl orange at a lower pH, with about 75% removal for pH 2.2 after 20 min 
of reaction as compared to 60% for pH 5.0 and only 40% for pH 7.2. There were no visible lag periods in the ini-
tial stage of the reaction as seen in the FeVI release, presumably because methyl orange adsorption on chitosan 
occurred as soon as the pellets were mixed with the methyl orange solution.

We also postulate that, as FeVI penetrates the buffer, the continuous oxidation of the adsorbed methyl orange 
molecules and the re-adsorption onto the vacant chitosan sites form a dynamic process. In a typical experimental 
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Figure 5. The degree of FeVI released from the chitosan capsule under different pH values.
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run, a 100-ml solution containing 1 g of pellets covering an average of 20 mg of K2FeO4 in contact with 5 mg/l 
methyl orange would give a total of 0.5 mg methyl orange molecules available for reaction. Approximating a 
methyl orange removal at 60% after 20 min of reaction with the chitosan-encapsulated pellets (referring to Fig. 6), 
an amount of 0.3 mg would have been removed from the solution. Also, with an equilibrium adsorption capacity 
of methyl orange at about 0.2 mg/g (Fig S7), about 0.2 mg methyl orange would have been adsorbed onto chitosan 
at equilibrium. However, observing the time to reach equilibrium needing about 2 hours, it is likely that only 
a fraction of the equilibrium adsorption capacity was actually attained within the initial 20 min. We therefore 
deduce that adsorption alone cannot explain the mass removal of methyl orange from the solution, and that the 
released FeVI is responsible for the removed amount observed in the experiments. Given the concurrent effects of 
the adsorption and degradation dynamics of methyl orange, we were not able to calculate the mass distribution 
of FeVI consumed by the oxidations of surface-bound methyl orange and bare chitosan surface, as well as those 
potentially released into the solution.

implications to environmental decontamination. As with most other oxidants, ferrate applications 
for the decontamination of environmental pollutants are limited to water and wastewater purification. In a 
recent review article, Rai and coworkers52 suggested that FeVI-based materials also have the potential for soil 
and groundwater cleanup on the merit of its strong oxidative property to degrade recalcitrant soil contaminants, 
though the authors gave no further details concerning the method of delivery. Encapsulation of chemicals has 
been manufactured and tested to achieve the controlled release of active chemical for groundwater treatment. As 
reviewed by O’Connor and coworkers53 on the subject of in-situ groundwater remediation with controlled release 
materials, they indicate that technology applications both in situ bioremediation and in-situ chemical treatment 
have roughly tripled over the past decade than those in the decade prior. Depending on the functionality of the 
in situ treatment, the reactive materials can be oxidants, oxygen, substrate (to provide O2 or electron donors for 
growth stimulation of aerobic bacteria), or even microbial culture. There is little doubt that the potential appli-
cation of controlled release of active chemicals for subsurface decontamination has gained growing technical 
popularity, though important factors such as the time-scale of treatment and the environmental conditions need 
to be considered.

A comparison of the controlled-release studies for environmental remediation is presented in Table 2. Most 
existing studies reported in the literature used a petroleum derivative as the sole or as a primary component of 
the shell formation. These shell formations typically last weeks or months when applied to remediate ground-
water contamination. For remediating complex groundwater contaminations, especially those involved dense 
non-aqueous phase liquid (DNAPL) such as trichloroethylene (TCE), treatment time-scales are typically in the 
order of years, entailing longevity of the binding material of the in situ chemicals to withstand numerous attrition 
factors that gradually deteriorate the protective function of binders. While potassium permanganate (KMnO4) 
has demonstrated effective oxidation of recalcitrant organic contaminants, paraffin wax possessing the attributes 
of being unreactive and morphologically sturdy has been an increasingly popular choice of material to contain 
reactive reagents in the forms of candle54, pellet55, and microcapsule56. Other types of chemically resistant poly-
mers such as polycaprolactone57 and polyurethane58, have also been applied as the primary binding material for 
similar reasons. These encapsulated particles or pellets gradually dissolved in solutions of designation and are 
invariably effective for single uses. Paraffin candles entrapping core oxidants, due to their larger volume, can be 
used multiple times, even though they are never “recharged” or “regenerated” with the replenishment of fresh 
oxidant.

For situations where remediation of the unsaturated zone of subsurface contamination (e.g., early leaching 
period of agrochemical and other emerging contaminants), the time-scale requirement (in days) for the reme-
diation can be substantially shorter than remediation of DNAPL. There are also instances where the delayed 
release of a chemical (in minutes) is desired for wastewater treatment. In these situations, encapsulation of oxi-
dants with petroleum-based polymers may not be suitable, as releasing oxidant from its binder may be very 
slow. Alternatively, naturally-occurring polysaccharides (e.g., cellulose, dextran, pectin, alginic acid, agar, agarose, 

Figure 6. Removal efficiency of methyl orange using encapsulated ferrate (Experimental conditions: methyl 
orange concentration = 5 mg/l, encapsulated ferrate sample = 1 g, solution volume = 100 ml).
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chitosan, and carrageenan) can be used as the binder that is also more environmentally friendly than their petro-
leum counterparts. Particularly, chitosan derivatives are nontoxic, biocompatible, and biodegradable – A major 
reason they have been widely used in pharmaceutical and product to control the delivery rate of conventional 
drugs, protein drugs, and bioactive compounds. We have demonstrated in the present study that, by architecting 
the encapsulation of a powerful oxidant (in FeVI) with a natural biopolymer (in chitosan) in combination with a 
long-chained nonpolar hydrocarbon buffer medium, it is possible to use an environmentally benign wall material 
while controlling the rate of release of the oxidant by the buffer medium. The time-scale of the controlled release 
can range from minutes (CO), hours (MO) to days (OA) depending on the type of hydrocarbon buffer medium 
of choice.

conclusions
We have successfully demonstrated the potential to use a natural material in chitosan as a wall material to form a 
shell layer to encapsulate FeVI, separated by another hydrocarbon layer protecting chitosan to be directly attacked 
by its ferrate content.

Preliminary tests indicated that the chitosan-ferrate capsules remained stable for at least 20 days, with no 
significant loss of ferrate content when the particles were exposed in an open-air condition. The ferrate could be 
released in a controlled manner through adjusting the pH of a solution, as demonstrated by the control release 
study that indicated accelerated ferrate release when the microcapsules were placed in solutions with greater 
acidity. Results of degradation of methyl orange using the chitosan-ferrate microcapsules in solution with various 
pH values was consistent with the ferrate release study. The greater extent of degradation was observed for methyl 
orange when the microcapsules were placed in more acidic solutions.

Methods
preparation of feVi/buffer/chitosan pellets. Commercial potassium ferrate (Tianjin Weiyi Chemical, 
China), which had a purity of about 12% experimentally determined following a method previously reported59,60. 
Encapsulation with chitosan was prepared by coacervation technique and the liquid hardening method. The 
procedural simplicity and consistency at laboratory-scale level render coacervation as the method of choice. The 
tested chemical parameters included chitosan (75–85% deacetylated, Sigma-Aldrich) as the wall material (con-
centrations 0.5%, 1%, 1.5% in 1% glacial acetic acid) and NaOH the hardening agent (concentrations 5%, 10%, 
15%).

A carbohydrate layer was added between the chitosan wall material and ferrate via an ultrasound-assisted 
co-mixing step. The additional layer was designed to prevent unwanted oxidation, as ferrate that could attack 
the hydroxyl and amino functional groups in chitosan. Oleic acid (OA) (C18H34O2, 90%, Sigma-Aldrich), refined 
coconut oil (CO) (a mixture of C8-C16 saturated fatty acids, mainly lauric acid and myristic acid) and mineral 
oil (MO) (mixtures of C9 and higher alkanes) were the three types of hydrocarbon buffers experimented. To syn-
thesise capsules using OA and MO as buffers, potassium ferrate was directly mixed with the buffering solution by 
sonification (Q700, Qsonica, USA). The mixture was added to the 1% chitosan solution and stirred thoroughly. 
The FeVI/buffer/chitosan mixture was then syringe-injected into NaOH as the hardening agent using a gauge-18 
hypodermic needle. Additionally, considering the chitosan solution is insoluble to either OA or MO, a non-ionic 
surfactant (Tween 80, Sigma-Aldrich) was added as an emulsifier to improve the homogeneity of the mixture. In 
this case, the surfactant (1 ml) was added simultaneously with the ferrate solution to the buffering solution. Upon 
the formation of the microcapsules, they were placed in a freeze dryer (FD-1, Eyela, Japan) for drying for 3 h.

The presence of fatty acids as the main components of CO makes it characteristic of high boiling point. 
When heating above room temperature (25 °C) CO is in liquid form, but it solidifies at a temperature below this. 

Core 
material Shell material

Encapsulation 
method Duration of sustained release Compound(s) challenged Degradation rate Ref.

K2FeO4 Paraffin Molten/cooling 108 h Trichloroethylene (TCE) >90% after 60 min at pH 4.0–6.0; ~60% after 
150 min at pH 10

34

K2FeO4
Ethyl cellulose/ 
paraffin

Phase separation
90% release after ~1.6 months at mass 
ratio (shell:core) of 1:1; complete 
release ~3 min in pure phase PCE

2-sec-butyl-4,6-
dinitrophenol

~93% after 80 min at pH 6.5; ~70% at pH 4.0; 
~35% at pH 10

35

KMnO4 Paraffin Perchloroethylene (PCE)

KMnO4 rapidly released into pure phase 
PCE (∼3 min) as the paraffin wax completely 
dissolved. Encapsulated KMnO4 particles 
preferentially accumulated at the PCE-water 
interface.

55

KMnO4 Stearic acid Oil phase 
separation

~30% release after 240 h using 
KMnO4-to-stearic acid mass ratio of 
1:3; ~60% at mass ratio of 1:1

TCE
90% TCE (c0 = 10 mg/l) degraded at pH 2.9 in 
2 h; ~75% at pH 6.8–8.8. Degradation lasts up 
to 12 h, using 17.5 mg pellets with KMnO4-to-
stearic acid mass ratio of 1:3.

56

KMnO4
Polycaprolactone/ 
starch

Melt blending to 
form cubes

~64% after 76 d, mostly in the first 
10 d TCE ~95% removal (c0 = 0.5 mg/L) using column 

tests, effective up to ~100 pore volumes
57

Na2S2O8 Paraffin Melt blending to 
form candles ~180 mg/d Benzene BTEX

~80% after 6 h (c0 = 0.5 mM) using fresh 
candle; ~35% benzene (0.1 mM) ~50% 
toluene (0.08 mM) ~55% ethylbenzene 
(0.07 mM) ~60% xylene (0.07 mM)

54

Table 2. A comparison of the existing studies using various types of core and shell combination for controlled 
release applications.
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Consequently, capsules with a two-layer formation can be synthesised by first mixing potassium ferrate pow-
ders in CO in the liquid state, followed by solidifying the FeVI/CO droplets using a syringe to form particles in a 
cooling bath. The droplets were then coated with chitosan by immersing in 1% chitosan solution, before finally 
forming pellets by syringe-injecting the FeVI/CO/chitosan into the hardening solution.

The prepared pellets were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), 
and Fourier Transform Infrared Spectroscopy (FTIR). Detail information on these instrumental analyses is 
included in Supplementary Material S1.

ferrate capsules stability and controlled release studies. The stability of FeVI encapsulated in the 
as-prepared pellets was performed by exposing the pellets in ambient air for at least 20 days. Dry pellets sample 
of 0.1 g was randomly taken every 48 h, ground and placed in 100 ml of deionised water (25 °C, pH 7.0), and the 
concentration of FeVI was quantified by measuring the diffusion reflectance at the wavelength of 510 nm61 using a 
UV-Vis spectrophotometer (V-630, Jasco, Japan).

The stability of the FeVI entrapped in the buffering agents was tested as follows. Multiple samples containing 
an identical amount of potassium ferrate (50 mg) covered with a buffering agent (5 ml) were prepared in 20 ml 
vials. At each 20 min interval, one sample was taken and mixed with 15 ml of DI water. The mixture was then fil-
tered with a 0.22 µm disc membrane, and the residual FeVI was quantitated using the UV-Vis spectrophotometric 
method depicted earlier. Furthermore, for the solid FeVI/CO droplets (3 g in 10 ml), a fixed amount of samples 
(75 mg) were taken in a 20 min interval and placed in vials containing 10 ml of water and heated to 40 °C to melt 
the droplets. The residual FeVI released into the solution was then measured by the same method. Each test was 
performed in duplicate, and the average value and its range were presented in Fig. 1.

The controlled releases studies were conducted by weighing 0.1 g pellet sample into separate flasks containing 
deionised water whose pH was adjusted by sulfuric acid to 7.0, 5.2, and 2.1, respectively. The experiments were 
performed at room temperature (20–25 °C) under a mild stirring condition. Samples were taken every 2 min in 
the initial 20 min of the release test, and 10 min afterward, to observe the release rate of FeVI analyzed spectropho-
tometrically as described previously. Each experimental run were performed in duplicate.

Degradation by chitosan-encapsulated feVi pellets. The oxidative reaction between encapsulated FeVI 
samples and methyl orange was carried out using 250 mL glass reactors in which methyl orange solution was agi-
tated with magnetic stirrers when an accurate weight of the capsules was added. The reactors were mechanically 
stirred for selected periods. For analysis, the samples were stirred for 20 min before analysis. All the experiments 
were carried out at room temperature (25 ± 1 °C). The concentration of methyl orange was determined by UV-Vis 
absorption spectrometer (Jasco V-63, Japan); the absorption spectrum shows an absorption peak at 470 nm62. 
Methyl orange adsorption by chitosan was studied separately from the oxidation experiments by FeVI to eluci-
date the amount of the methyl orange oxidatively removed. All experimental runs were performed in duplicate, 
unless there were any data points in a particular run that exceeded 10% of the average value. In such cases, a third 
run was conducted to verify the accuracy of the experiments. Detail information can be seen in Supplementary 
Material S3 and S4. Oxidative reaction time, encapsulated ferrate were investigated for their effect on the oxida-
tion performance regarding methyl orange removal as a function of reaction time.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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