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Abstract

It has long been argued that the form of North American Paleoindian points was affected by hafting. According to this
hypothesis, hafting constrained point bases such that they are less variable than point blades. The results of several studies
have been claimed to be consistent with this hypothesis. However, there are reasons to be skeptical of these results. None
of the studies employed statistical tests, and all of them focused on points recovered from kill and camp sites, which makes
it difficult to be certain that the differences in variability are the result of hafting rather than a consequence of resharpening.
Here, we report a study in which we tested the predictions of the hafting hypothesis by statistically comparing the
variability of different parts of Clovis points. We controlled for the potentially confounding effects of resharpening by
analyzing largely unused points from caches as well as points from kill and camp sites. The results of our analyses were not
consistent with the predictions of the hypothesis. We found that several blade characters and point thickness were no more
variable than the base characters. Our results indicate that the hafting hypothesis does not hold for Clovis points and
indicate that there is a need to test its applicability in relation to post-Clovis Paleoindian points.
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Introduction

Investigating the nature and causes of variation in point form is

an important task for archaeologists interested in the Paleoindian

period (ca. 13,600–11,450 calBP) of North America. There are

two main reasons for this. One is that understanding variation in

point size and shape is necessary for establishing the cultural-

historical types that Paleoindian archaeologists rely on (e.g. [1–5]).

The other is that variation in point size and shape may be

informative regarding the behavior of Paleoindians, including their

use of the landscape and their hunting practices (e.g. [6–12]).

One well-known hypothesis concerning variation in Paleoindian

point form contends that it was affected by hafting. According to

this hypothesis, hafting requirements constrained the size and

shape of point bases but did not affect the size and shape of point

blades [3,4,13]. An important implication of the hafting hypothesis

is that the base is the most diagnostic portion of Paleoindian points

[3,4].

A key prediction of the hafting hypothesis is that base characters

should be less variable than non-base characters. This prediction

has been supported in several papers [3,14–18], but there are

reasons to be skeptical about the results of the relevant analyses.

First, statistical tests were not used in the analyses, and thus it is

unclear whether the differences in variability are any greater than

would be expected on the basis of chance alone. Second, the

analyses focused on points recovered from kill and camp sites. This

is problematic because many points recovered from kill and camp

sites were resharpened prior to being lost or discarded and

therefore it is difficult to be sure that the differences in variability

between the base and non-base portions of the points are the result

of hafting constraints rather than a consequence of resharpening.

Third, experimental studies using replica Clovis points suggest that

both tip and base repairs would have been needed to maintain

functionality [19,20].

Given this uncertainty, we decided to re-test the hafting

hypothesis. In our study, we focused on Clovis points, which are

found throughout North America and are widely accepted to date

to 13,600–13,000 calBP [21,22]. We controlled for the potentially

confounding effects of resharpening by analyzing points from

caches as well as points from kill and camp sites. A cache is a

tightly clustered deposit of artifacts that appear to have been

deposited at the same time and are associated with little or no

manufacturing and/or maintenance debris [23]. The majority of

cached points were either not used or used only lightly before

being deposited. Hence, including cached points decreases the

potential for resharpening to confound tests of the hafting

hypothesis. Additional differences from previous tests of the
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hafting hypothesis are that we used digitizing techniques to

capture point form and employed a statistical test to compare the

variability of the base and non-base characters.

Materials and Methods

1. Sample
Our sample comprised 122 Clovis points. We focused on

complete points and specimens missing at most an ear because it is

difficult to implement the data-capture methods we employed with

incomplete artifacts. Sixty-eight points are from kill/camp sites

and 54 are from caches. We focused on Clovis points from western

North America because the distribution of Clovis caches is limited

to the west. Kill/camp points come from sites located in the

Southwest (Lehner, Murray Springs, and Naco), the Southern

Plains (Blackwater Draw, Domebo, Jake Bluff, and Miami), and

the Northern Plains (Dent and Colby). Cached points come from

sites located in the Northwest (East Wenatchee, Fenn, and Simon)

and the Northern Plains (Anzick and Drake). It has been suggested

that the Anzick points may be burial goods rather than part of a

cache, because human skeletal remains have also been recovered

at the site [24–26]. We do not find this argument convincing for

two reasons. First, the artifacts and skeleton were recovered with a

front-end loader, so there is no stratigraphic evidence that they are

associated [27]. Second, radiocarbon dates derived from some of

the artifacts recovered at the site do not overlap with radiocarbon

dates derived from some of the human bones, which suggests that

they are not contemporaneous [27,28]. Locations of the sites and

the number of points per site are shown in Figure 1 and Table 1,

respectively.

Epoxy casts were used in lieu of some of the original points.

Buchanan [59] compared casts of Clovis points from the Lehner

site to the actual points and found that there was no statistical

difference between the casts and the real artifacts. The paired t-

tests he carried out gave p values ranging between 0.841 and

0.962. Consequently, the inclusion of epoxy casts in the sample is

not expected to have affected the present study.

2. Data capture
The data-capture method we used was the same as the one

employed by Buchanan [59], Buchanan and Collard [6], and

Buchanan and Hamilton [7]. Briefly, digital images of the points

were imported into the Thin Plate Spline Digitizing Program

(Version 2.02) [60]. Thirty-two landmarks were used to define the

edges and base of each point, and the coordinate data were used to

compute ten interlandmark distances in Matlab 6.0. The

characters are listed in Table 2 and illustrated in Figure 2. In

addition to the ten characters derived from digitizing the points,

base thickness (BT) and maximum thickness (MT) were taken

directly from points using digital calipers or were taken from

published sources. Base thickness was not available for four cached

points (from East Wenatchee) and seven points from kill/camp

sites (four from Jake Bluff and three from Blackwater Draw). The

characters were selected to capture variability in the two major

parts of the points, the base and the blade, as well as variability in

overall length and thickness. The characters include traditional

linear measurements as well as measurements that cannot be taken

accurately with calipers. Five of the characters relate to the base

(BT, BB, LB, BW, and LT), three to the blade (BL, MW, and

TW), and four to overall point length (ML, OL, EL, and TB). The

thirteenth character, MT, is maximum thickness.

The precision of the digitized characters was estimated on a

sample of points from Naco and Lehner. Measurement error–the

percentage of the total variance attributable to within-individual

variance resulting from imprecision of measurements–was calcu-

lated for each character using Model II ANOVA [61–63]. Points

Figure 1. Locations of archaeological sites in the western
United States from which points used in the study were
recovered. Triangles = kill sites/camp sites. Circles = caches. (Figure is
adapted from Buchanan et al. [71]).
doi:10.1371/journal.pone.0036364.g001

Table 1. Clovis point assemblages used in the analyses.

Site State Context
Number of
Points* References

Anzick MT Cache 6 [24–30]

Blackwater
Draw

NM Kill/camp 24 [31–36]

Colby WY Kill/camp 4 [37]

Dent CO Kill/camp 2 [38,39]

Drake CO Cache 131 [40]

Domebo OK Kill/camp 4 [41]

East
Wenatchee

WA Cache 142 [42–45]

Fenn UT/WY/ID3 Cache 16 [46,47]

Jake Bluff OK Kill/camp 4 [48,49]

Lehner AZ Kill/camp 10 [50]

Miami TX Kill/camp 3 [51,52]

Murray
Springs

AZ Kill/camp 6 [53,54]

Naco AZ Kill/camp 8 [55]

Simon ID Cache 5 [56–58]

*Number of points complete enough to be digitized.
1Five of the points analyzed from Drake were epoxy casts.
2We analyzed three of the points using scale drawings made by S. Moore (see
[43]) and a cast of a fourth point.
3The actual location of the Fenn cache is unknown; however, it was most likely
recovered from the three-corners area where Utah, Wyoming, and Idaho meet
[47].
doi:10.1371/journal.pone.0036364.t001

Impact of Hafting on Paleoindian Point Variability
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were chosen randomly and digitized in three non-consecutive

sessions, and the variance components were calculated from the

resulting dataset. Measurement error associated with the charac-

ters ranges from 0.002 to 0.031 percent, which compares favorably

to measurement errors reported in biological morphological

studies (e.g. [61,63]). Furthermore, there is no relationship

between percent measurement error and the coefficient of

variation of a character (r = 20.072, p = 0.623), which suggests

measurement error does not drive variation.

We estimated missing values for nearly complete points. This

was accomplished with the expectation-maximization missing-data

replacement method, which uses information about covariation

among variables to predict missing values [64]. A recent

simulation demonstrated that this form of missing-data replace-

ment is more precise and reliable than principal-component

estimation when using a moderate number of characters (6–12)

and large sample sizes [64].

3. Analyses
To test the prediction that base characters of Paleoindian points

should be less variable than characters from other portions of

points, we used the coefficient of variation (CV) and Fligner and

Killeen’s [65] distribution-free two-sample test (FK test). The CV,

commonly used in archaeology (see refs in [66]), expresses the

normalized amount of variation in a set of measurements, and is

calculated by dividing the sample standard deviation by the

sample mean and multiplying the quotient by 100. The FK test

first ranks the CVs in the combined dataset from smallest to

largest. Values that are tied are given sequential ranks. After the

values are ranked, they are weighted by the sample size and then

converted to the quantile of the standard normal distribution that

corresponds to the weighted score. This value is then squared.

Next, ties are resolved by averaging the weighted values associated

with the tied values. These normalized scores are then summed to

create the test statistic, T. Statistical significance is assessed using

the large scale approximation z-score, which is calculated by

dividing the difference between the T statistic and the expected T

score by the variance. We chose the FK test to compare CVs

because comparative analyses have shown that it is among the best

tests for reducing type-I and type-II errors. For example, Donnelly

Figure 2. Image of a Clovis point from Blackwater Draw, NM,
showing approximate location of characters. Character abbrevi-
ations follow Table 2. (Figure is adapted from Buchanan et al. [71]).
doi:10.1371/journal.pone.0036364.g002

Table 2. Characters used in the study.

Characters

Description Section

BB Base boundary length. Calculated as the sum of the interlandmark distances along the nine landmarks that define the basal
concavity situated between the two basal landmarks.

Base

LB Base linear length. Calculated as the distance between the two basal landmarks. Base

BW Base width Width at one-third the total length above the basal landmarks. Base

LT Average of the right and left distances from basal landmarks to the position at one-third the total length along the opposite
edge boundaries.

Base

BT Thickness of base taken perpendicular to both basal ears. Base

BL Average of the right and left distances between the position of the maximum edge inflection and the tip landmark. Blade

MW Average of the right and left distances between the positions of the maximum edge inflections to the midline (character ML). Blade

TW Average of the right and left distances between the tip landmark to basal landmarks (character TB) segments to the position of
the maximum edge inflection along each point edge.

Blade

ML Midline length. Calculated as the distance from the tip landmark to the midpoint of the basal concavity (character BB). Length

OL Overall length. Calculated as the distance from the tip landmark to the midpoint of the segment between the basal l
andmarks (character LB).

Length

EL Average of right and left edge boundary lengths. Edge boundary length is calculated as the sum of interlandmark distances along
the 13 landmarks that define each edge.

Length

TB Average of the right and left distances from the tip landmark to each of the basal landmarks. Length

MT Maximum thickness taken perpendicular to OL. Thickness

doi:10.1371/journal.pone.0036364.t002

Impact of Hafting on Paleoindian Point Variability
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and Kramer [67] used Monte Carlo methods and simulated data

to evaluate 11 tests of relative variation measures, including a CV-

based parametric bootstrap test, modifications of Levene’s test,

and the FK test. They found that the FK test performed best in

terms of maintaining an acceptable type-I error rate when he

samples were drawn from different underlying distributions,

including situations where the samples had different underlying

distributions. The FK test also consistently ranked as the most

powerful or nearly the most powerful test in Donnelly and

Kramer’s [67] comparative analyses.

We carried out two analyses, one focused on kill/camp points

and one on cached points. In both analyses, we used the FK test to

compare the CV of each of the base characters to the CV of each

of the three blade characters, the four length characters, and

thickness. Because our dataset includes values for five base

characters and eight non-base characters (three blade characters,

four length characters, and thickness) we carried out a total of 40

FK tests in each analysis. The test prediction was that the CVs for

the base characters should be significantly less than the CVs for

the blade characters, the length characters, and for thickness. Both

analyses were carried out in PAST version 2.00 [68]. Because we

conducted multiple unplanned tests, we used Benjamini and

Yekutieli’s [69] method of significance-level correction. We

employed this method rather than the commonly used Bonferroni

correction because it has been shown to balance the reduction of

type-I and type-II error rates better than Bonferroni correction

[70].

Results

The CVs for the kill/camp points are presented in Table 3. To

reiterate, the hafting hypothesis predicts that the base characters

should have lower CVs than the blade characters, the length

characters, and maximum thickness. This is not the case.

Maximum thickness is less variable than all five of the base

characters; blade character MW is less variable than base

characters BW, BB, LT, and BT; and blade character TW is

less variable than base character BT. Thus, the qualitative

comparison of the CVs for the kill/camp points does not support

the hafting hypothesis.

Table 4 summarizes the results of the FK tests that focused on

kill/camp points. The tests indicate that the five base characters

are significantly less variable than the four length characters.

However, not all the base characters are less variable than the

three blade characters or maximum thickness. Base characters BB

and LT have CVs that are not statistically significantly different

from the blade characters, and base characters LB and BT have

CVs that are statistically indistinguishable from the CV for blade

character MW. In addition, base character BT has a CV that is

significantly greater than the CV for blade character TW, while

base character BW has a CV that is not statistically different from

the CVs for blade characters MW and TW. Lastly, none of the

CVs for the base characters is statistically different from the CV

for maximum thickness. Thus, the FK tests confirm that the kill/

camp points do not support the predictions of the hafting

hypothesis.

Table 5 presents the CVs for the cached points. As before, the

hafting hypothesis’ prediction is that the base characters should

have lower CVs than the blade characters, the length characters,

and maximum thickness. The ranking of the CVs is different from

the ranking yielded by the kill/camp points, but the prediction is

still not supported. Base character BT is the least variable

character, but maximum thickness is less variable than base

characters BB, LB, and BW, and blade character MW is less

variable than blade character LT. Thus, the qualitative compar-

ison of the CVs for the cached points also does not support the

hafting hypothesis.

Results of the cache point-focused FK tests are summarized in

Table 6. As in the qualitative comparison, the results differ from

the results of the equivalent analysis of kill/camp points, but the

prediction is still not supported. The CVs of all the base characters

are statistically indistinguishable from the CV of maximum

thickness, and the CVs of base characters BB, LB, BW, and LT

Table 3. Coefficients of variation for characters of kill/camp
points, ranked from smallest to largest.

Character Section Coefficient of Variation

MT Thickness 21.76

LB Base 22.08

MW Blade 22.72

BW Base 22.83

BB Base 25.80

LT Base 26.46

TW Blade 28.96

BT1 Base 29.55

BL Blade 33.04

EL Length 35.14

TB Length 36.19

OL Length 36.78

ML Length 37.41

1Measurements of base thickness (BT) were available for only 61 of the 68 kill/
camp points.
doi:10.1371/journal.pone.0036364.t003

Table 4. Comparison of base characters (BT, BB, LB, BW, and
LT) with characters describing the blade (BL, MW, and TW),
different lengths (ML, OL, EL, and TB), and thickness (MT) of
kill/camp points.

Section Base Base Base Base Base

Character BB LB BW LT BT1

Blade BL 0.0232 0.0031* 0.0039* 0.0376 0.0045*

Blade MW 0.4840 0.3654 0.4558 0.2313 0.0904

Blade TW 0.0359 0.0093* 0.0202 0.1044 0.0078{

Length ML 0.0008* 0.0001* 0.0002* 0.0016* 0.0003*

Length OL 0.0009* 0.0001* 0.0002* 0.0018* 0.0003*

Length EL 0.0024* 0.0003* 0.0008* 0.0045* 0.0011*

Length TB 0.0012* 0.0001* 0.0003* 0.0028* 0.0007*

Thickness MT 0.2411 0.3851 0.2872 0.0733 0.1233

P-values (one-tailed) from Fligner and Killeen’s [65] distribution-free two-sample
test for coefficient of variations are shown.
*Base character has CV that is significantly lesser than the non-base character
using Benjamini and Yekutieli’s [69] alpha correction; the critical value for 40
tests is a = 0.01169.
{Base character has CV that is significantly greater than the non-base character
using Benjamini and Yekutieli’s [69] alpha correction; the critical value for 40
tests is a = 0.01169.
1Measurements of base thickness (BT) were available for 61 of the 68 kill/camp
points.
doi:10.1371/journal.pone.0036364.t004
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are statistically indistinguishable from the CVs of at least two other

non-base characters. Thus, the cached points-focused FK tests

confirm that the cached points also do not support the predictions

of the hafting hypothesis.

Discussion

The hafting hypothesis predicts that base characters of

Paleoindian points should be less variable than their non-base

counterparts. The results of our analysis of Clovis points from kill/

camp sites were not consistent with this prediction. While the base

characters were significantly less variable than the length

characters, several base characters were indistinguishable in terms

of variability from the blade characters and from maximum

thickness. Our analysis of cached Clovis points also did not

support the prediction that base characters of Paleoindian points

should be less variable than their non-base counterparts. As with

the analysis of kill/camp points, the base characters were not

significantly less variable than the blade characters or maximum

thickness. Thus, the results of our analyses do not support the

hafting hypothesis.

One issue needs to be addressed before considering the

implications of our results–our choice of base characters. Two of

these characters, LT and BW, might be disputed with respect to

their position relative to the haft. To reiterate, character LT is the

average of the right and left distances from base landmarks to the

position at one-third the total length along the opposite edge

boundaries, and character BW is the width at one-third the total

length above the base landmarks (Figure 1). It is conceivable that

the distal terminus of character LT and both termini of character

BW were above the haft and thus characters LT and BW may not

in fact have been constrained by the haft. We think this is unlikely.

However, even if it were the case, it would not affect our findings

because the other three base characters–BB, LB, and BT–

undeniably relate to the part of a point that would have been

hafted and are statistically indistinguishable from several non-base

characters. Thus, even if characters LT and BW were rejected as

base characters, our analyses would still not support the

predictions of the hafting hypothesis. It appears, then, that the

hafting hypothesis does not hold for Clovis points.

There are several potential reasons why the hafting hypothesis

does not hold for Clovis points. One is that Clovis points were

hafted in such a way that the haft did not constrain the base

characters. A second possibility is that constraints were placed on

the base of Clovis points, but the base was not the only portion of

Clovis points that was constrained. It could be, for example, that

the haft covered more of the point than imagined by proponents of

the hafting hypothesis and that consequently some non-base

dimensions of the point were constrained by it. Alternatively, some

of the non-base dimensions may have been constrained by the

demands of flight or hide-penetration, or by cultural norms.

Determining which of these hypotheses is correct will require a

better understanding of how large / small the dimensions of a

Clovis point can be without losing functionality when different

methods of hafting are used (e.g. with/without a foreshaft, with/

without mastic) and when different methods of spear-delivery are

employed (e.g. thrusting, unassisted throwing, atlatl-assisted

throwing). One way of shedding light on this is through the

replication and experimental use of spears with different combi-

nations of Clovis points, hafts, and delivery methods (e.g. [19,20]).

An obvious implication of our results is that it would be sensible

to re-assess whether the hafting hypothesis holds for post-Clovis

points. Doing so should be fairly straightforward. Earlier we

pointed out that there are two potential problems with previous

tests of the hafting hypothesis. One is that they did not use

statistical tests. We argued that this is problematic because it

means we cannot be sure the differences in variability between the

base and non-base characters identified in the analyses are

consequential as opposed to being simply a result of chance. The

other potential problem is that the analyses focused on points

recovered from kill/camp sites. We suggested this is problematic

because many such points were resharpened prior to being lost or

discarded, and thus it is difficult to be sure that the differences in

variability are the result of hafting rather than the consequence of

resharpening. Given that our analysis of kill/camp Clovis points

did not support the hafting hypothesis any better than our analysis

Table 5. Coefficients of variation for cached points, ranked
from smallest to largest.

Character Section Coefficient of Variation

BT1 Base 16.89

MT Thickness 20.34

BB Base 21.63

LB Base 22.06

BW Base 26.52

MW Blade 28.94

LT Base 29.01

BL Blade 32.99

TB Length 33.83

TW Blade 34.01

OL Length 34.04

ML Length 34.11

EL Length 34.60

1Measurements of base thickness (BT) were available for only 50 of the 54
cached points.
doi:10.1371/journal.pone.0036364.t005

Table 6. Comparison of base characters with characters
describing the blade and point length, and thickness of
cached points.

Section Base Base Base Base Base

Character BB LB BW LT BT1

Blade BL 0.0019* 0.0018* 0.0282 0.0932 0.0001*

Blade MW 0.0636 0.0652 0.2100 0.3771 0.0108*

Blade TW 0.0264 0.0293 0.0717 0.2218 0.0038*

Length ML 0.0009* 0.0008* 0.0104* 0.0403 ,0.0000*

Length OL 0.0010* 0.0009* 0.0115* 0.0345 ,0.0000*

Length EL 0.0019* 0.0017* 0.0167 0.0435 ,0.0000*

Length TB 0.0011* 0.0013* 0.0130 0.0497 ,0.0000*

Thickness MT 0.3298 0.3240 0.1016 0.0171 0.1106

P-values (one-tailed) from Fligner and Killeen’s [65] distribution-free two-sample
test for coefficient of variations are shown.
*Base character has CV that is significantly lesser than the non-base character
using Benjamini and Yekutieli’s [69] alpha correction; the critical value for 40
tests is a = 0.01169.
1Measurements of base thickness (BT) were available for 50 of the 54 cached
points.
doi:10.1371/journal.pone.0036364.t006
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of cached Clovis points, there is reason to believe that

resharpening may not in fact have undermined the results of the

previous tests of the hafting hypothesis and that the real problem is

the failure to use a statistical method to control for the possibility

that measures of variation may differ simply by chance alone. The

corollary of this is that it should be possible to revisit the previous

tests of the hafting hypothesis and subject the reported measures of

variation to statistical analysis. This should provide a rapid

indication of whether the hafting hypothesis applies to post-Clovis

points.
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