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Abstract 

As a public key cryptography, Elliptic Curve Cryptography (ECC) is well known to be the 

most secure algorithms that can be used to protect information during the transmission. ECC 

in its arithmetic computations suffers from modular inversion operation. Modular Inversion is 

a main arithmetic and very long-time operation that performed by the ECC crypto-processor. 

The use of projective coordinates to define the Elliptic Curves (EC) instead of affine 

coordinates replaced the inversion operations by several multiplication operations. Many 

types of projective coordinates have been proposed for the elliptic curve E: y
2
 = x

3
 + ax + b 

which is defined over a Galois field GF(p) to do EC arithmetic operations where it was found 

that these several multiplications can be implemented in some parallel fashion to obtain 

higher performance. In this work, we will study Hessian projective coordinates systems over 

GF (p) to perform ECC doubling operation by using parallel multipliers to obtain maximum 

parallelism to achieve maximum gain. 

 

Keywords: Elliptic Curve Cryptography , Public-Key Cryptosystem , Galois Fields Of 

Primes GF(p) , Modular Arithmetic , Hessian Curves , Modular Inversion Operation , 

Parallelism , Projective Coordinates , and Projection. 

 

1. Introduction 
 
Information is one of the most important issues of our era. Timely and reliable information is 

necessary to process transactions and human communications. Information security is the 

process by which an organization protects and secures its systems, media, and facilities that 

process and maintains information vital to its operations. 

The science of protecting information from unauthorized operations is called Cryptography 

[1, 3]. It’s the study of hiding information by writing it using secret code to maintain it from 

any illegal process during the transmission. The basic communication scenario [3] for a 

cryptography system contains two major parties (Fig 1): A, who transforms the original 

message that contains meaningful information (plaintext) into an enciphered and 

unintelligible form (Ciphertext) using an algorithm and a key in a process called encryption. 

The second party, B, transforms Ciphertext back to the Plaintext. Such a process is called 

decryption. A third party, E, is a potential eavesdropper. According to the 

Encryption/Decryption keys, cryptosystems fall into two categories: Symmetric key, and 

Public key. In Symmetric key algorithms, the encryption and decryption keys are the same 
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and known to both communicated parties (Ek = Dk). Examples of symmetric algorithms are 

the Data Encryption Standard (DES) [1, 3] and Rijndeal (AES) [3]. 

 

 

 

 

 

 

 

 

 
 

 

 
 

 
Fig.1.Fig.1.Fig.1.Fig.1. Basic communication scenario for cryptography system 

 

In the public key cryptography (PKC) algorithms, where two different keys are used (Ek ≠ 

Dk), the encryption key (Ek) is made public and the decryption key (Dk) is kept private but it 

is computationally infeasible to find the decryption key (Dk) without information known only 

to the initiator (who wants to receive messages from others). This operation makes PKC 

methods very powerful and flexible to use. On the other hand, the PKC needs high 

computational power compared with the computations needed by the symmetric key 

algorithms which affects the performance of the cryptosystem. 

There are many PKC algorithms such as RSA Algorithm which is based on the difficulty of 

integer factorization for very large integers and EL-Gamal Cryptosystem [2] which is based 

on discrete logarithm problem [1, 3, and 8]. While conventional public-key cryptosystems 

(RSA, Diffie-Hellman, and Digital Signature Algorithms- DSA) operate directly on large 

integers, an Elliptic Curve Cryptosystem (ECC) operates over points on an elliptic curve. 

In the next section, Section 2, the description and revision of ECC and its basic operations is 

briefly described. Section 3 presents the System equations where it forms the core of the 

implementation phase proposed in this work. In Section 4, Modeling and Analysis, the 

graphical representation of how the data travels from inputs to outputs by using data flow 

diagrams (DFD) is presented. Section 5, Cost Comparison, shows the Area and Speed 

estimation for each design and finally compare them using AT measure. The comparison 

between Hessian Curves and Standard Curves (Short Weierstrass Curves) for ECC over GF 

(p) point doubling operation is given in Section 6, Summary of results, followed by the 

conclusion, Section 6. 

 

2. ECC Cryptosystem-Revisited 
 
ECC is a public-key Cryptosystem that is based on the Discrete Logarithm arithmetic 

involving the points of the curve. As noted in [3, 13], curve arithmetic is defined in terms of 

underlying finite field which is a set of elements that have a finite order (number of 

elements). The most popular finite fields used in ECC are Galois Fields (GF) that defined 

modulo prime number GF (p) or a binary extension fields GF (2
n
). 

ECC offers equivalent security as provided by the classical cryptosystems such as RSA, and 

Discrete Logarithm (DL) with substantially smaller key sizes. Figure 2 [4] shows the key size 
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comparisons that provide equivalent security levels for RSA, DL and EC systems as an 80-, 

112-, 128-, 192- and 256-bit symmetric key encryption scheme. These five specific security 

levels [4] were selected because they represent the amount of computations required to 

perform an exhaustive key search on the symmetric-key encryption schemes SKIPJACK, 

Triple-DES, AES-Small, AES-Medium, and AES-Large, respectively. 
 

 

Fig.2Fig.2Fig.2Fig.2 RSA, DL, and EC key sizes for equivalent security levels. Bit lengths are given 
for The DL parameter q and the EC parameter n, and the RSA modulus n and the DL 

modulus P, respectively 
 

For example, a 160-bit ECC key provides the same level of security as a 1024-bit RSA key 

and 224-bit ECC is equivalent to 2048-bit RSA. Smaller keys result in faster computations, 

lower power consumption, as well as memory and bandwidth savings. Assume that p is a 

prime number, and let GF (p) denote the finite field of integers modulo p. The point at 

infinity, denoted by ∞, is also said to be on the curve. The set of all the points on E is denoted 

by E over GF (p). Figure 3 shows an example of elliptic curves E: y
2
 = x(x+1) (x-1) defined 

over Real numbers (R). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.3Fig.3Fig.3Fig.3 Elliptic curves E: y2 = x(x+1) (x-1) (over R). 

 

Cryptographic mechanisms based on elliptic curves depend on arithmetic involving the points 

of the curve, where the original message is converted to points on the affine [14] coordinates 

(Figure 3), so that the basic arithmetic operations behind the ECC are [8]: Point Addition, 

Point Doubling, and Point Multiplication (Scalar Multiplication). As mentioned in [1], the 

heart of these operations is based on modular multiplication which involves reduction by the 

modulus in its computations. Modular division [5], however, is a very expensive operation. 

Many algorithms were proposed to decrease the cost of the inversion operations, or eliminate 

it completely. Some of these algorithms tried to enhance the performance by optimizing the 
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algorithms which were designed to work in the affine coordinates and the other solutions built 

using the projective coordinates. 

In this paper, we will focus on the design and implementation of a new hardware algorithm 

for ECC computations such as inverse computation in GF (p) based on efficient projective 

coordinates systems [10]. Many projective coordinates were proposed to compute inversion 

operations for ECC. We will study and use Hessian Projective coordinates [12] to compute 

ECC operations, exploit maximum parallelism to gain in speed and then implement each 

coordinates with the best number of multipliers. Our Proposed work use Hessian projective 

coordinates systems over GF (p) to perform ECC doubling operation by using parallel 

multipliers to obtain maximum parallelism to achieve maximum gain. 

 

3. System Equations 
 

The computations of point doubling operation in the normal affine coordinates which result in 

(x3, y3) are appeared in subsection (3.1). The subsections below (3.1 to 3.3) shows the 

computations of point doubling operation in the projective coordinates which result in a 

projective point (X3, Y3, Z3), so that you can use the same projection to get it back in the 

affine form (x3, y3). All computations below assume that X1 = X2 = X, Y1 = Y2 = Y. 

Let E be an elliptic curve over GF (p) which use Hessian Curves to represent ECC then E can 

be defined by the equation:  

E: x
3
 + y

3
 + 1 = dxy 

To derive the equations of point doubling operation, we need to find the slope (m) where m = 

dy/dx as the following: 

 

 

 

This equation will be used in the affine coordinate computations and in all 3 cases of 

projections for this curve in the projective coordinates. 

 

3.1. Using Affine Coordinates 

 

The affine coordinates [7, 8] considered the normal form Hessian curve without any 

projection to produce the value of the point doubling represented as P3= (x3, y3). By Using the 

slope (m) equation calculated before and the equation (2), we will get the following: 

 

 

 

 

 

 

 

 

We simplify these equations to get the final form for x3, and y3, we got: 
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We can see that the point doubling using Hessian curve at the affine coordinates require 8 

multiplications, 5 addition, and 2 modular inversion  operations. The modular inversion 

(appears just in the affine coordinates case) which is known to be very long operation, takes a 

time equivalent to about 3-4 sequential multiplications time , it will be avoided when we 

apply the projective coordinates instead of affine coordinates to the point doubling operation. 

 

3.2. Using Projection (X/Z, Y/Z) 

 

Here we substitute (x, y) � (x � X/Z, y � Y/Z), so that m � M Then: 

 

 

 

 

 

 

 

Using Equation (10): we will substitute the new values for each x, y, and m, we get the 

following: 

 

 

 

 

 

 

 

We want the denominator for both X’3, Y’3 to match the projection used so that we multiply 

X’3 by B/B, we get the following: 

 

 

 

 

 

 

Now we simplify the computations of X3, Y3, Z3 to its main operations (multiplications, 

additions...) in some parallel manner: 
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3.3. Using Projection (X/Z, Y/Z
2
) 

 

Here we substitute (x, y) � (x � X/Z, y � Y/Z
2
), so that m � M Then: 

 

 

 

 

 

 

 

Using Equation (10): we will substitute the new values for each x, y, and m, we get the 

following: 

 

 

 

 

 

 

We want the denominator for both X’3, Y’3 to match the projection used so that we multiply 

Y’3 by (Z
2
B)/ (Z

2
B), we get the following: 

 

 

 

 

 

 

Now we simplify the computations of X3, Y3, Z3 to its main operations (multiplications, 

additions...) in some parallel manner: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Using Projection 
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(X/Z
2
, Y/Z

3
) 

 

Here we substitute (x, y) (x � X/
Z2,

 y � Y/Z
3
), so that m � M Then: 

 

 

 

 

 

 

Using Equation (10): we will substitute the new values for each x, y, and m, we get the 

following: 

 

 

 

 

 

 

 

We want the denominator for both X’
3
, Y’

3
 to match the projection used so that, we get the 

following: 

 

 

 

 

 

Now we simplify the computations of X3, Y3, Z3 to its main operations (multiplications, 

additions...) in some parallel manner: 
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4. Modeling and Analysis 
 
The System Modeling of this research provides an interactive framework that expresses the 

hardware architecture of an ECC Crypto-Processor via various projections which includes the 

hardware components such as multipliers/adders/registers and the internal and external 

interconnections of the ECC Crypto Processor. 

Our system models provide a blocks diagram to express the top view of our design and the 

graphical representation of how the data travels from inputs to outputs by using the well-

known data flow diagrams (DFD) for ECC operations. Figure 4 shows the block diagram of 

the ECC Processor using 4 multipliers which appeared when we projected Hessian curves to 

(X/Z, Y/Z) while it needed 3 parallel multipliers when we projected it to (X/Z, Y/Z
2
) or 

(X/Z
2
, Y/Z

3
). 

 

 

 

 

 

 

 

 

Fig.4. Block diagram for Point Doubling Using Hessian Curve with Projection (X/Z, Y/Z) 

 

Fig.5Fig.5Fig.5Fig.5 DFD for Point Doubling- (X/Z, Y/Z)   Fig.6Fig.6Fig.6Fig.6 DFD for Point Doubling – (X/Z, Y/Z2)  
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Figure 5 shows the data flow diagram for point doubling using Hessian curves with projection 

(X/Z, Y/Z), as we see in the figure that the best number to implement the Hessian curves with 

this projection will be 4 parallel multipliers which results in 4 sequential multiplications. 

Where in figure 6 which shows the data flow diagram for point doubling using Hessian 

curves with projection (X/Z, Y/Z
2
), it needs 3 parallel multipliers to implement Hessian curve 

with the same cost of 6 sequential multiplications. 

Figure 7 shows the data flow diagrams for point doubling using Hessian curves with 

projection (X/Z
2
, Y/Z

3
); it uses 3 parallel multipliers to calculate the doubling operation in 6 

sequential multiplications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7Fig.7Fig.7Fig.7 DFD for Point Doubling – (X/Z2, Y/Z3) 
 

5. Cost Comparison 
 

We can consider the cost of the design as a figure of merit to show which design is better or 

can be preferred considering both parameters, i.e. Area and Speed. 

The area of the design can be decided by an estimated number as area of the key components. 

In our case, what is the expected ratio in area between the adder and multiplier? We will use 

the estimation values used in [11]. By this in mind, we have area of multiplier and adder 

making up the area estimation of the complete hardware. The area will be difference if it has 

3 or 4 multipliers. Let us note this Area as (A). Table 1 shows the Area component 

comparison for three projections. We assume our study for 256 bits, since this number of bits 

in ECC is giving good security compared to RSA [4]. 
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How many cycles do we need per hardware to compute 256 bits? If we recall the binary 

algorithm [6] that computes scalar multiplication of ECC, it will need doubling as the number 

of bits and addition based on the bits value. So on average for 256 bits computation, we need 

256 doubling and 256/2 additions. If looked as per bit in the cycles, every bit needs one 

doubling and half addition, which can give us an estimate of the total timing (T). Table 2 

shows the Time component comparison for three projections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cost can be AT; which means Area times Time for applications having similar 

importance of hardware area and computation speed, AT
2
, if time is more important or it can 

be A
2
T, if area is more important. These cost measures will give different results in a graph 

which helps in choosing the preferred efficient design based on the application need. Fig.3 

shows the AT Characteristics for the three different projections based on the results of the 

table 3. As we see in the figure, AT Characteristics shows that the best implementation of 

ECC Cryptoprocessor using Hessian curve appears when used with the projection X/Z, Y/Z. 
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Fig.8.Fig.8.Fig.8.Fig.8. AT Characteristics for three different designs 
 

6. Summary of Results 

 
Table 4 shows the Comparison between Hessian Curves and Standard Curves (Short 

Weierstrass Curves) for ECC over GF (p) point doubling operation when applied using affine 

coordinates as a summary of results and using 3 main operations. 

 

 

 

 

 

 

 

 

 

 

 

Table 5 shows the Comparison between Hessian Curves and Standard Curves [9](Short 

Weierstrass Curves) for ECC over GF(p) point doubling operation when applied using 

projective coordinates with different projections as a summary of results where we extracted 

them from the data flows in the modeling and analysis section in combination with the 

equations in the system equations section. The comparison in the table considers the three 

projections (X/Z, Y/Z), (X/Z, Y/Z
2
), and (X/Z

2
, Y/Z

3
) regarding seven major parameters. 

 

7. Conclusions 
 

In this paper, we propose new hardware algorithms for elliptic curve cryptographic 

computations that use Hessian curves over GF (p). Where ECC suffers from modular 

inversion operation in its computations, this paper propose the use of projective coordinates 

that use different projection forms to eliminate the inversion operation by converting it into 

consecutive multiplication operations that can be applied for parallel multipliers. 
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The normal form (in the affine) of Hessian curves results in 2 inversion operations which are 

eliminated by using the projective forms where the delay of the inversion operation is 

equivalent to the delay of 3 sequential multiplications. 

The projections X/Z, Y/Z
2
 and X/Z

2
, Y/Z

3
 when applied to the Hessian curves take 

approximately the same critical path delay where they all need the delay of 6 sequential 

multiplications. While they show the best results regarding the space (3 parallel multipliers 

and 2 parallel adders), the exact critical path delay (T6M + T4A). The best utilization of 

hardware components (Multipliers and Adders) and the minimum delay (T4M + T3A) was 

achieved by the projection X/Z, Y/Z where it gives the best AT measure. Regarding standard 

Short Weierstrass curves, It is also shown that projection of (x, y) to (X/Z, Y/Z) leads to a 

better parallel implementation than the usually selected projection of (x, y) to (X/Z
2
, Y/Z

3
). 
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