Texas A&M University-San Antonio

Digital Commons @ Texas A&M University- San Antonio

Computer Science Faculty Publications College of Business

2011

Activities and Trends in Testing Graphical User Interfaces
Automatically

Izzat M. Alsmadi
Texas A&M University-San Antonio, ialsmadi@tamusa.edu

Follow this and additional works at: https://digitalcommons.tamusa.edu/computer_faculty

b Part of the Computer Sciences Commons

Repository Citation

Alsmadi, Izzat M., "Activities and Trends in Testing Graphical User Interfaces Automatically" (2011).
Computer Science Faculty Publications. 2.
https://digitalcommons.tamusa.edu/computer_faculty/2

This Article is brought to you for free and open access by the College of Business at Digital Commons @ Texas
A&M University- San Antonio. It has been accepted for inclusion in Computer Science Faculty Publications by an
authorized administrator of Digital Commons @ Texas A&M University- San Antonio. For more information, please
contact deirdre.mcdonald@tamusa.edu.

https://digitalcommons.tamusa.edu/
https://digitalcommons.tamusa.edu/computer_faculty
https://digitalcommons.tamusa.edu/business
https://digitalcommons.tamusa.edu/computer_faculty?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tamusa.edu/computer_faculty/2?utm_source=digitalcommons.tamusa.edu%2Fcomputer_faculty%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:deirdre.mcdonald@tamusa.edu

Journal of
Software

Engineering

ISSN 1819-4311

@

Academic
Journals Inc. www.academicjournals.com

Journal of Software Engineering 5 (1): 1-19, 2011
ISEN 1819-4811 / DOI: 10.3923/s2.2011.1.19
© 2011 Academic Journals Inec.

Activities and Trends in Testing Graphical User Interfaces
Automatically

Izzat Alsmadi

Department of Information Technelogy, Faculty of Computer and Information Technology, Yarmouk
University, Irbid, Jordan

ABSTRACT

This study introduced some new approaches for software test automation in general and testing
graphical user interfaces in particular. The study presented ideas in the different stages of the test
automation framework. Test automation framework main activities include test case generation,
execution and verification. Other umbrella activities include modeling, critical paths selection and
some others. In modeling, a methodelogy is presented to transform the user interface of applications
into XML (i.e., eXtensible Markup Language) files. The purpose of this intermediate transformation
is to enable producing test automation components in a format that is easier to deal with (in terms
of testing). Test cases are generated from this model, executed and verified on the actual
implementation. The transformation of produects’ Graphical User Interface (GUI) into XML files also
enables the documentation and storage of the interface description. There are several cases where
we need to have a stored documented format of the GUI Having it in XML universal format, allows
it to be retrieved and reused in other places. XML Files in their hierarchical structure make it
possible and easy to preserve the hierarchical structure of the user interface. Several GUI
structural metrics are also introduced to evaluate the user interface from testing perspectives. Those
metrics can be collected automatically using the developed tool with no need for user intervention.

Key words: Software testing, GUI, test automation, test case reduction, modeling, test case
generation, test case execution

INTRODUCTION

Software testing tries to ensure that software products are not developed heuristically and
optimistically. This software engineering stage ensures that the developed software 1s error free
{This is possibly true in theory. In reality, no process can guarantee that the developed software
is error free). However, this stage takes a large percent of the overall project resources. Test
automation is expected to cost more at the beginning while save more eventually. There are extra
costs for test automation framework at start-up. However, once correctly implemented, it 1s widely
accepted that test automation will decrease the required number of human testers and hence
reduce the cost of testing. There are many repetitive tasks in testing that take a long time and that
occur very often (such as regression testing). For such activities, test automation is the best choice.

GUT test automation 1s a major challenge for test automation activities. Most of the current GUI
test automation tools are partially automated and require the involvement of users or testers in
several stages. Kxamples of some of the challenges that face GUIT test automation is dealing with
continuously new controls or compoenents, the dynamic behavior of the user interface, timing and
synchronization problems, ete.

J. Software FKng., 5 (1): 1-19, 2011

Test automation tools are still complex and expensive. They don't fully replace testers. They can
be usually used to re-execute those repeated tasks. Companies consider taking the decision to buy,
or not, a GUT test automation tool as a tough decision since they don’t know how much time it will
require upfront for setup. They also don’t know how much of test automation tasks can be fully or
partially automated. We all agree that complete coverage in test automation is impractical as we
also agree that complete coverage in manual testing is impractical too.

A tool 1s built in C# that uses reflection to serialize the GUT control components (Alsmadi and
Magel, 2007; Alsmadi, 2008). The tool collects GUI controls from the application executable and
then generates the XML file that contains all GUTI components and their properties. After test cases
are generated, they are automatically executed on the actual application. Certain control properties
are selected to be serialized. These properties are relevant to the user interface testing. The
application then uses the XML file that is created to build the GUI tree or the event flow graph.
Test cases are then generated from the GUI XML file. Generating the test cases takes into
consideration the tree structure to select the test cases that cover unique branches. Compared to
other commercial and research test automation tools, this tool is considered easy to use. All activities
formats are generic and universal (XML, or text files).

In test execution and verification, test cases are executed on the application and compared with
the original test suite (.e., compare the input to the test execution to its output. The input for test
execution is the output of the test case generation). The advantages of this object oriented approach
(i.e., test automation using the data model adapted in this research or dealing with GUI controls
as objects) over the widely used capturefreplay one, 1s in the fact that the model is generated at run
time which makes it a real representative of the current state of the GUI model. In record/play back
cases, we have to retest the application in case of any change in the functionalities or the GUI of
the program. Once utilized, this object oriented approach is expected to be less expensive as it does
not require users to manually test the application or make decision for pre- and post-conditions.

The main limitation in this approach in that it is capable of dealing with managed code.
Managed code 1s code developed by recent object oriented languages such as C# and Java where
the application contains information about its structure embedded within the application. Another
limitation is dealing with synchrenization and timing issues for the GUI controls. The application
uses the static structure of the application as an input to test case generation. However, in some
interactive applications there can be several differences between the static form and the dynamice
{(i.e., run time) form of the application.

There are several GUI test automation tools available in the market. Some of the larger vendors
for such tools include: IBM Rational, Mercury Segue. Trying to build a GUI test automation tool
is like trying to make a new operating system in that the available resources for the existing ones
are hard to compete with, However, GUI test automation has not reached a mature level were those
tools can be implemented in all scenarios with no problems. User Interfaces evolves rapidly with
richer and newer components. The automation processes in general use artificial intelligence
algorithms to simulate user activities. The richness and complexity of this space make it possible for
new research ideas to compete with long time existed test automation teols in the industry.

Several researches have been done about GUI testing using the data model
{Ames and Jie, 2004; Nistorica, 2005; Memon and Soffa, 2003; Memon, 2004; Memon and Xie,
2005; Sprenkle et ¢l., 2005). The overall goals and approach for this work 1s very similar to their
goals. The GUI testing framework described, as a GUI test automation structure, is generic and
should be applied to any testing or GUI testing model. Since research projects in general have

J. Software FKng., 5 (1): 1-19, 2011

limmted resources, each paper discusses a specific area of GUI test automation activities. Without
having all components, it is very hard to use such ideas in the industry. There is a need for using
universal standards for the cutput formats in all testing activities. If each tool 1s producing several
intermediate outputs (generated test cases, recorded scripts, log Files, ete.) it will be impossible to
use those tools or ideas in other research projects. Some papers follow a complex procedure in test
case generation and do not consider any state reductions. Assuming that changing any property
in any GUI object changes the GUI state is an assumption that generated a very large number of
possible states (i.e., state explosion) for even small applications. State reduction techniques are
considered here to improve the effectiveness of the proposed track. There are also several studies
that discuss techniques to improve test case generation with the goal of improving test coverage
{Memon, 2001; Memon, 2002; Memon ef al.,, 2003; Godase, 2005; Sampath, 2006; Xie, 2006;
Makedeonov, 2005; Memon, 2008).

The second category of related research belongs to semi test automation using some
capture/reply tools such as WinRunner, QuickTest pro, Segui silk, QARun, Ratiocnal Robot,
JECUnit, Abbot and Pounder to create unit tests for the Application Under Test (AUT).
Capturefreply tools exist and have been used in the industry for years. This may make them
currently, more reliable and practical as they have been tested and improved through several
generations and improvements. However, there are several problems and issues in using
record/play back tools. The need to reapply all test cases when the GUI changes, the complexity in
editing the script code and the lack of error handlings are examples of those issues. The reuse of
test oracles 1s not very useful in the case of using a capturefreplay tool. We expect future software
projects to be more GUI complex which will make the test automation data model more practical.
Many researches and improvements need to be done for the suggested data model to be more
practical and usable.

Several researches are presented to suggest or implement software test automation. For
example, some projects use planning from Al for software testing. After analyzing the application
user interface to determine what operations are possible, they (i.e., the operations) become the
operators in the planning problem. Next an initial and a goal state are determined for each case.
Planning is used determine a path from the initial state to the goal state. This path becomes the test
plan. In our approach, test cases are generated without any user involvement (to determine the
next state in the above approach which makes it semi automatic) through built in algorithms.

GUI testing framework described, as a GUI test automation structure, is generic and should be
applied to any testing or GUI testing model. Since research projects in general have limited
resources, each paper discusses a specific area of GUI test automation. Without having all
components, it 1s very hard to use such 1deas in the industry. There 1s a need for using universal
standards for the output formats in all testing activities. If each tocl is producing several
intermediate outputs (generated test cases, recorded seripts, log files, ete) it will be impossible to use
those tools or ideas in other research projects. Some studies follow a complex procedure in test case
generation and do not consider any state reductions. Assuming that changing any property in any
GUI object changes the GUIT state is an assumption that generated a very large number of possible
states for even small applications. State reduction techniques are considered here to improve the
effectiveness of the track. We intended to follow the same GUI testing framework for our future
work and expect the overall results to be more practical and easier to apply on actual projects.

Mustafa et al. (2007) focused on testing web based software. The study proposed using economic
feasibility based web testing as an alternative for model based testing due to the limitation of

J. Software FKng., 5 (1): 1-19, 2011

applying model based testing on the web. However, the challenge 1s in the automation of such
approach in order to reduce its overall expenses,

In Sengupta (2010) study is similar to proposed study which used XML schema for GUI
components regression testing. An application is developed to compare new and old test cases to
differentiate between those similar and those which are new or different.

Hanna and Abu Al (2011) studied web services robustness testing based on the platform.
Besides robustness, there are several major criteria that are the focus web services testing. This
includes performance, reliability and functionality.

Relative to GUI testing, Mao et al. (2006) focused on GUI testing and selection based on user
sessions (statistically) or usage to model the usage of the software, Usage paths are collected using
Windows Navigation Networks (WINNs) based on transition probability. Those can be also collected
automatically from the usage log.

Xin et al. (2010) study mixed the using of user profile and Marcov chain for automatically
deriving the testing model to improve the reliability of the software. Reliability testing is
increasingly important for critical systems, particularly synchronous or reactive systems where even
minor errors can be risky and expensive.

TEST AUTOMATION FRAMEWORK

The purpose of the GUI modeler is to transform the user interface to a form or model that 1is
easier to test using an automated tool. Figure 1 represents a generic software testing framework
{(Makedonov, 2005). Present study translated the GUI implementation inte a model that is easier
for test automation processes.

Some abstraction is used in removing those properties that are less relevant or important to the
UT state to reduce the large number of possible states. The manually selected properties are: the
control name, parent name, text, locationX (1.e., horizontal location}, locationY (i.e., vertical
location), text, or caption, forecolor, backeolor, enabled and visible.

In the process of developing test generation techniques, several test generation algorithms are
developed. All algorithms check for a valid selection of a tree edge. For example, using Notepad as
the AUT (A research application developed particularly for testing purposes and has capabilities
similar to MS Notepad) if, for example, the current control is File, then a test algorithm may select

lRequirements | —»| Build model Formal model

Generate expected
inputs
Generate
_I expected
9 outputs
Test inputs I R

System under
test and test
infrastructure

Y
Actual II Expected I
outputs output

est ob.jectiv_es gnII
stopping criteria
Decide whether to:
-Modify model
-Generate more tests Test B
-Stop testing and failure
-Estimate reliability

Fig. 1. Generic software testing framework

J. Software FKng., 5 (1): 1-19, 2011

1,NOTEPADMAIN,SAVE,SAVEFILEBUTTONT,,,

2 NOTEPADMAIN,EDIT.FIND,TABCONTROL TABFIND,

3 NOTEPADMAIN, VIEW,STATUS BAR.,,
4NOTEPADMAIN,FIND,TABCONTROL1.TABREPLACE,REPLACETABTXTREPLACE,
5 NOTEPADMAIN,FIND,TABCONTROL 1, TABREPLACE,REPLACETABLABEL?2,
6,NOTEPADMAIN, EDIT.CUT.,,

7 NOTEPADMAIN,EDIT FIND,TABCONTROL1, TABREPLACE,
8,NOTEPADMAIN,OPEN,OPENFILECOMBOBOX4

Fig. 2: A snapshot output sample from a test case generation algorithm

randomly a valid next control from the children of the File control (e.g., Save, SaveAs, Open, Exit,
Close, Print). In another algorithm, we processed the selected test scenarios to ensure that no test
scenario will be selected twice in a test suite. Figure 2 1s a sample output generated from one of the
test generation algorithms.

In the algorithm, each test case starts from the root or the main entry Notepad Main and then
selects two or more controls randomly from the tree. The algorithm verifies that the current test case
has not already been generated in the already generated test cases.

To evaluate test generation efficiency in the generated test cases, the total number of arcs
visited 1n the generated test cases 1s calculated to the total number of ares or edges in the AUT. This
is assuming that the AUT is transformed to a graph or tree model that represents the structure of
the code. Graphs are the most commonly used structure for testing. File- Save, Edit-Copy, Format.-
Font are examples of arcs or edges. An algorithm is developed to count the total number of edges
in the AUT by using the parent info for each control (This is a simple approach of calculating test
efficiency. More rigorous efficiency measuring techniques are planned in future work). Of those
tested applications, about 95% of the application paths can be tested using 200-300 test cases.

GUI modeling: The tool analyses the GUI and extract its hierarchical tree of controls or objects.
The decision to use XML File as a saving location is in the fact that XML Files support hierarchy.
This hierarchy can be persisted from the XML File. We encoded a level code for each control. The
Main Window 1s considered of level 0 and so on. A Notepad version 1s designed as a managed code
in C# to be used for testing. For this version the total number of controls for the whole application
came up to 1133. There may be some redundancy in this list as roots in each file are listed twice to
preserve the hierarchy.

Following is the over all counts of the controls in the different levels that is generated from the
Notepad application.

<Total-Count>

<Total-Application controls>1133</Total-Application controls>

<level O-controls>hh</level O-controls>b22</level 1-controls>

<level 2-controls>310</level 2-controls>level 3-controls>248</level 3-controls></Total-Count>

For test adequacy, each path of the GUI tree should be tested or listed at least once in the test
cases. A complete test case 1s a case that starts from level 0 and select an object from level 1 and so

J. Software Kng., 5 (1): 1-19, 2011

on. This 1s with taking the hierarchical structure into consideration and selecting for example an
object from level 2 that is within the reach of the selected cbject in level 1.

A partial test case can take two objects. Test case selection should also take in consideration the
number of controls or objects in each level. For the above example, level O will take 55/1133 = 4.85%
of the total test cases, level 1 will take 522/1133 = 46.07% of the total, level2 will take
41/183=27.36% and level 3 will take 246/1133 = 21.71% of the total.

We should decide whether we want to run a full test case which means a test case that start
from levelO and go back to levelO (in the graph path, start from top, traverse to an end and then
go back to the top), or partial test cases. The test case can take the full route from level O to the
deepest level and then back on the same path (or another) to the same original point.

The limatation we should consider 1s that controls in levels 1 and up may not be accessible
directly or randomly and they have to be accessed through their levelO control. Also since we are
pulling all controls together, the naming convention should be unique so that the object can be
known, or otherwise we should use its full name.

To preserve the GUI hierarchical structure from the XML File, the application parses it to atree
view. Two different terminologies (encoded in the tree) were used:

« Control-level: This 1s the vertical level of the GUI contrel . The main GUI is considered the
highest level control or control O, then we keep adding 1 as we go down the hierarchy

+ Control-unit: This is the horizontal level of the control. For example, in Notepad, File menu,
with all its sub unit are unit 1, Edit menu unit 2, Format, unit 3 and so on

Generally, each full test case has to start from control-level zero and go back to this point. As
an example, a test case will not be considered a valid test case if it moves from File to Edit to Format,
{the main menus). The test case has to move at least one level up or down. Kach control 1s defined
by where it is located horizontally and vertically. Checking for consistency in the graph should
verify that there are no two objects that have the same control unit and level.

i~ * | N
=] Find Tab{11) ~
= tabContral 1{12}

+ tabFind{22)
+ tabReplace(22)
+ tabGoTo(22)
+]--Fort{32)
=}--Help Topics{13}
=1 tabControl1{14)
+-tabPage1(24)
+-tabPage2(24)
+- tabPage3(24)
link Label4(14)
link: Label 3{14)
link Label2(14)
linkLabel1{14)

= NeotepadMain{14)

]

System Windows Forms Menulem, tems Count: 7, Test: File(15)
System Windows Forms Menulem, tems Court: 11, Text: Edit{15)
System Windows Forms Menultem, tems Count: 2, Text: Format(17)
System Windows Forms Menultem, tems Count: 1, Text: View(18)
System Windows Forms Menultem, tems Count: 2, Text: Help(15)

[[]

nenFile Dialog{210) v

e

+
b EX
=

Fig. 3: Noteped contrel units and levels

J. Software ling., 5 (1) 1-19, 2011

A full test case is 1. from levell :OpenFileDialog 2. from level 2:5aveFilecomboBox2 3. from level3
:System. Windows.Forms. Menultem, Items.Count: 0, Text: Goto 4. from level 4 :Printlabel2

Select a test cass | Save

Fig. 4: A full test case generated

Figure 3 shows Notepad with the contrel unit and level for its GUI objects. This is a graph of
the GUI objects showing the control level and unit for each object.

Gretting the event flow graph from the above tree is straightforward. A particular event will
occur in the tree if moving within the same control unit number one control level down. For
example, File (15)-Save (13) is a valid event since both have the same control unit number
“17. We can then pick the number of test cases to generate and the tocl will generate full or partial
test cases that observe the previous rules. Figure 4 shows an example of a full test case that the tool
generates. Numbers in the above GUI components (i.e., File (15), Save (13) represent encoding
values that uniquely locate each control in the GUI graph.

Present. study used some abstraction removing those properties that are less relevant to the GUI
state and testing to reduce the large number of possible states. In order to build a GUIT test oracle,
we have to study the effect of each single event. The test case result will be the combining results
of all its individual events effects. For example, if we have a test case as File-Save-Edit- copy- select
test-paste, then the result of this test case has effects on two objects; File-Save has effect on a File.
We should study the File state change and not the wheole GUI state change. Then Edit-Copy has
an effect on the clipboard object, Paste will have the effect on the main editor object or state, adding
the copied text.

Verifying the results of this test case will be by verifying the state change of the three objects
affected; The File, the clipboard and the object editor. For such scenarios, we may need to ignore
some intermediate events. KEach application should have a table like Table 1, to be checked for test
oracles.

Test case generation: In test case generation, several Artificial Intelligent (AI) heuristically
based algorithms are created for the autoematic generation of test cases. We propoesed and
implemented those algorithms to ensure a certain degree or level of coverage in the generated test
cases where such algorithms try to verify that generated test cases are not repeated or redundant.
Those algorithms are heuristic as they are not based on mathematical formula or background.
Those algorithms manually verify that randomly generated test cases are new or they will be
eliminated. In one algorithm, all GUI paths are given an initial weight for test case selection and
those weights are reduced every time an edge or path is selected. The following dynamically-created
test generation algorithms are heuristics. The goal is to generate unique test cases that represent
legal test scenarios in the GUI tree with the best branch coverage. This is guaranteed by creating
a unique test scenario each time. Here is a list of some of the developed algorithms.

Random legal sequences: In this algorithm, the toal first randomly selects a first-level contral.
It then picks a child for the selected control and so on. For example, in a Notepad AUT, If Notepad

7

J. Software Kng., 5 (1): 1-19, 2011

Tahble 1: A sample table for GUI events effects using notepad merms

Control originating

Control-event pair the event The object(s) affected Effect

File, save File-save A File The text from the object editor will be saved to the specified file
Edit, cut Edit-cut Clipboard, ohject editor Moving a text-image to clipboard, clearing the original location
Edit, copy Edit-copy Clipboard Moving a text-image toclipboard, keep acopy in the original location.
Kdit, paste Edit-paste Object editar Copying a textdimage to a destination

1,NOTEPADMAIN,OPEN,OPENFILELABEL2,,,
3,NOTEPADMAIN,VIEW,STATUS BAR,,,

5 NOTEPADMAIN,HEL PTOPICSFORM,HELPTOPICS, INDEX,LABEL4,
7NOTEPADMAIN, TXTRBODY,,,,

9, NOTEPADMAIN, TXTBODY,HELPTOPICS,CONTENT,LABELI,
11,NOTEPADMAIN,HELPTOPICSFORM,LINKLABELA,,,
13,NOTEPADMAIN, TXTBODY,LINKLABEL4,,,
15,NOTEPADMAIN,FILE,EXIT,,,

17,NOTEPADMAIN,EDIT,DELETE,,,

19,NOTEPADMAIN,HELP,ABOUT NOTEPAD,,,

21 NOTEPADMAIN,PRINTER,PRINTERBUTTONI,,,

23 NOTEPADMAIN,EDIT,REPLACE,,

25 NOTEPADMAIN,FONT,FONTLISTBOXI,,,

27 NOTEPADMAIN, FIND,TABCONTROL1,TABREPLACE ,REPLACETABLABEL3,
29 NOTEPADMAIN,SAVEAS,SAVEFILELABELS,,,

31 NOTEPADMAIN,TXTBODY,ABOUT NOTEPAD,,
33,NOTEPADMAIN,HELP,HELP TOPICS,,
35,NOTEPADMAIN,TXTBODY,HELP TOPICS,,
37.NOTEPADMAIN,SAVE,SAVEFILELABELS,,,

39 NOTEPADMAIN,FORMAT,FONT,FONTGROUPBOX 1, FONTTEXTBOX4,
41 NOTEPADMAIN,SAVE,SAVEFILELISTBOX]1,,,

43 NOTEPADMAIN,FORMAT,FONT,FONTLISTBOX2,,

45 NOTEPADMAIN,SAVEAS,SAVEFILELABEL?, ,

47 NOTEPADMAIN,FORMAT,WORD WRAP, .

49 NOTEPADMAIN,PAGE SETUP.PAGESETUPLABEL4,,

Fig. 5: A sample output from the random legal-sequence algorithm

main menu 1s selected as the first level control; candidate children are File, ldit, Format, View and
Help. In the second step, if the File control is selected from those children, the children for File
(i.e., Save, SaveAs, Ext, Close, Open, Print, etc) are the valid next-level controls from which cne
control 1s randomly selected and so on. The summary of steps for this algerithm 1s:

* Belect dynamically (i.e., the tocl) the main entry control {or select any control of level)

* Find all the children for the control selected in one and randomly pick one child

+ Find all the children for the control selected in two and select one child control

* Repeat three until no child is found for the selected control. The test scenario for this cycle 1s
the sequence of contrels from all previous steps

+ Repeat the above steps for the total number of the required test scenarios

Figure 51s a sample cutput dynamically generated from the random legal sequence algorithm.

8

J. Software Kng., 5 (1): 1-19, 2011

WHILE mumtestcases < testcase required
SELECT control root

DISPLAY control_root

WHILE control_root has new child
DISPLAY child

END WHILE

INCREMENT numtestcases

END WHILE

Fig. 8a: Pseudo code for Random less controls

Random less previously selected controls: In this algorithm, controls are randoemly selected
as in the previous algorithm. The only difference 1s that if the current control is previously selected
{e.g., in the test case just before this one), this control is excluded from the current selection. This
causes the algorithm to always lock for a different new control to pick. The pseudo code for this
algorithm 1s as follows:

* Belect the main entry control (or select any first level control)

+ Find all the children for the control from one and select one child control

* Save the selected control to a variable. Check if this is the previously selected control. If this 1s
the same control selected in the previous scenario, pick ancther one

+ Find all the children for the previously selected contrel and pick one child control. Save the
selected control to a variable. Check the previously selected control. If they are the same, select
another one

* Repeat four until no child is found for the selected control. The test scenario of this cycle 1s the
controls in sequence from all previous steps

* Repeat the above steps for the total number of required test scenarios

Figure 6a and b represent the pseudo code.

Excluding previously generated scenarios: Rather than excluding the previously selected
control as in the second algorithm, this algorithm excludes all previously generated test cases or
scenarios and hence verifies the generation of a new unique test case every time. The scenario 1s
generated and if the test suite already contains the new generated scenario, it will be excluded and
the process to generate a new scenario starts again. In this scenario, the application may stop
before reaching the number of required test cases (requested by the user) to generate if there are
no more unique test scenarios to create. As explained earlier, the algorithm 1s given limited
resources. It is expected to find the solution within those resources or the algorithm stops and is
considered to have failed (similar to the way ping command in networks works; given limited time
to test reachability).
The steps for this algorithm are:

« Belect a first level contral

* Find all the children for the selected control in step one and randomly pick one child of that
control

* Find all the children for the contrel selected in step two and pick one child of that control

J. Software FKng., 5 (1): 1-19, 2011

0,NOTEPADMAIN,PAGESETUP.PAGESETUPLABEL4,
1,NOTEPADMAIN,SAVEAS, SAVEFILELISTBOX1,,,
2,NOTEPADMAIN,PAGESETUP,PAGESETUPLABELA,
3,NOTEPADMAIN,SAVEAS, SAVEFILELISTBOXI,,,

4 NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4,,,
5, NOTEPADMAIN,SAVEAS, SAVEFILELISTBOXI,,,
6,NOTEPADMAIN,PAGESETUP,PAGESETUPLABELA,
7 NOTEPADMAIN,SAVEAS, SAVEFILELISTBOXI,,,,

8 NOTEPADMAIN,PAGESETUP.PAGESETUPLABEL4,
9,NOTEPADMAIN,SAVEAS, SAVEFILELISTBOXI,,,
10,NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
11,NOTEPADMAIN,SAVEAS,SAVEFILELISTBOX1,,,
12 NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
13,NOTEPADMAIN,SAVEAS,SAVEFILELISTBOXL,,,
14,NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
15,NOTEPADMAIN,SAVEAS,SAVEFILELISTBOX1,,,
16 NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
17.NOTEPADMAIN,SAVEAS,SAVEFILELISTBOXL,,,
18, NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
19,NOTEPADMAIN,SAVEAS,SAVEFILELISTBOX1,,,
20 NOTEPADMAIN, PAGESETUP.PAGESETUPLABEL4
21 NOTEPADMAIN,SAVEAS, SAVEFILELISTBOXL,,,
22, NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
23,NOTEPADMAIN,SAVEAS,SAVEFILELISTBOX]1,,,
24 NOTEPADMAIN, PAGESETUP.PAGESETUPLABEL4
25 NOTEPADMAIN,SAVEAS, SAVEFILELISTBOX1,,,
26,NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4
27 NOTEPADMAIN,SAVEAS,SAVEFILELISTBOX]1,,,
28 NOTEPADMAIN, PAGESETUP.PAGESETUPLABEL4
29 NOTEPADMAIN,SAVEAS,SAVEFILELISTBOX1,,,
30,NOTEPADMAIN,PAGESETUP,PAGESETUPLABEL4

EEE]

EEE]

EEE]

EEE]

333

EEE]

333

EEE]

333

EEE]

333

EEE]

333

EEE]

333

Fig. 6b: A sample from the algorithm; random less previously selected controls

+ Repeat step three until no child is found for the selected control

The test scenario for this eyele 1s the controls in sequence from all previous steps. Save the
sequence of the test scenario to a Hashtable (e.g., a data structure)

+ Check the scenarios that are existed in the Hashtable. If the current created scenario is in the
Hashtable, exclude it from the selection and restart the selection process
* Repeat the above steps for the total number of the required test scenarios unless a termination

process 1s called. Figure 7 shows a sample output from the above algorithm

As seen in the sample, some of the generated test cases are canceled as they were previcusly
generated {from looking at the sequence of the test cases).

10

J. Software FKng., 5 (1): 1-19, 2011

1,NOTEPADMAIN,PRINTER,PRINTERLABEL10,,,
3,NOTEPADMAIN, SAVEAS.SAVEFILELABEL4,,,
5,NOTEPADMAIN,ABOUT,ABOUTHELPLABEL2,,,

7. NOTEPADMAIN,PAGESETUP,PAGESETUPGROUPBOX1,PAGESETUPRADIOBUTTONI,,
9,NOTEPADMAIN, VIEW,STATUS BAR,,
11,NOTEPADMAIN,FILE,EXIT,,.
13,NOTEPADMAIN,BUTTON3,STATUS BAR,,,
15,NOTEPADMAIN,ABOUT,ABOUTHELPLABEL3,,,
17.NOTEPADMAIN,BUTTONS3,,,,

19 NOTEPADMAIN,BUTTON3,ABOUTHELPLABELS3,,,
21,NOTEPADMAIN,BUTTON3, ABOUTHELPLABEL?2,,,

23, NOTEPADMAIN,FONT,FONTLABEL4,,,

25 NOTEPADMAIN, FORMAT,FONT,FONTLABEL4,,

27 NOTEPADMAIN, FONT,FONTLISTBOX3,,,

29 NOTEPADMAIN,HEL PTOPICSFORM,HELPTOPICS,INDEX,LABEL3,
31,NOTEPADMAIN,OPEN,OPENFILELABELS,,,

33 NOTEPADMAIN, HELPTOPICSFORM,LINKLABEL4,,,

35 NOTEPADMAIN,EDIT,UNDO,,.
37,NOTEPADMAIN,BUTTON3,UNDO,,,

39, NOTEPADMAIN,EDIT,REPLACE,,,

Fig. 7: A sample of the unique-scenarios algorithm

Weight selection algorithm: In this scenario, rather than giving the same probability of

selection or weight for all candidate children of controls, as in all previous scenarios, in this

algorithm any child that is selected in the current node causes its weight (1.e., probability of

selection) next time to be reduced by a certain percent. If the same control is selected again, its

weight 1s reduced again and so on.

The summary of steps for this algorithm is:

Select the first level control

Select randomly a child for the control selected in step one. Give equal weights for all children.
Decrease weight for the selected one by a fixed value

Find all the children for the control selected in step two and randomly pick one child control.
Give equal weights for all children and decrement the weight for the selected one by the same
fixed value (this value can be the same for all levels, or each level can have a different value).
Repeat step three until ne child is found for the selected control

The test scenario for this cycle is the sequence of the selected controls from all the previous steps
Repeat the above steps for the total number of the required test scenarios unless a termination

process is called

Keep the decreased weights from the earlier scenarios. Figure 8 is a sample output from the

weight selection algorithm.

Both algorithms; three and four, are designed to ensure branch coverage, all-paths testing

(i.e., testing that experiences all possible paths of an application. Paths usually represent different

decisions in the code), and reduce redundancy in the generated test suite.

11

J. Software FKng., 5 (1): 1-19, 2011

1,NOTEPADMAIN,HELPTOPICSFORM,HELPTOPICS,INDEX,LABELS3,
3NOTEPADMAIN,SAVEAS,SAVEFILELABEL?2,,,

5 NOTEPADMAIN,EDIT,PASTE.,,

7 NOTEPADMAIN,BUTTON3,,,,

9,NOTEPADMAIN,FIND, TABCONTROL1,TABFIND,FINDT ABBTNCANCEL,
11,NOTEPADMAIN,VIEW,STATUS BAR,,,

13, NOTEPADMAIN,HELP,HELP TOPICS, ,
15,NOTEPADMAIN,ABOUT , ABOUTHELPLABELL,,,
17,NOTEPADMAIN,FORMAT,FONT,COMBOBOX],,
19,NOTEPADMAIN,FORMAT,FONT,FONTGROUPBOX 1, FONTTEXTBOX4,
21 NOTEPADMAIN,OPEN,OPENFILEBUTTON2,,,

23 NOTEPADMAIN, HELP,ABOUT NOTEPAD,,

25 NOTEPADMAIN,SAVE, SAVEFILELABELO,,,

27, NOTEPADMAIN,FIND,TABCONTROL 1. TABFIND,FINDTABTXTFIND,
29 NOTEPADMAIN,SAVEAS,SAVEFILELABEL3,,,

31 NOTEPADMAIN, PRINTER,PRINTERLABELS,,,
33,NOTEPADMAIN,FILE,OPEN,OPENFILECOMBOROXI,,

35 NOTEPADMAIN,FONT,FONTGROUPBOX1,FONTTEXTBOX4,,

37 NOTEPADMAIN,SAVE, SAVEFILELABEL],,,

39 NOTEPADMAIN, FONT,FONTLISTBOXI,,,

41, NOTEPADMAIN,EDIT,REPLACE,,,
43,NOTEPADMAIN,PAGESETUP,PAGESETUPBUTTON2,,,

45 NOTEPADMAIN,FIND, TABCONTROL1 TABREPLACE, REPLACETABCHKMATCHCASE,
47 NOTEPADMAIN, FILE,PRINT,PRINTTAB,PRINTGROUPBOXI,

49 NOTEPADMAIN,FONT,FONTLABEL2,,,

Fig. 8: A sample output from the weight selection algorithm

100 —— Effec. All

el Effec. Al2

90 / Effect Al3
% / Effect Al4

. /
. /
; /
30 /

20

Alogorithms % effectiveness

10

o

T T
o
o
(32

o [=} [=3 o [=}
- ™ Yo} o o
N <

1000
5000
20000
40000

No. of test cases generated

Fig. 9: Test suite effectiveness for the four algorithms explained earlier

12

J. Software FKng., 5 (1): 1-19, 2011

We define test suite effectiveness that can be calculated automatically in the tool in order to
evaluate the above algorithms. Test suite effectiveness is defined as the total number of edges
discovered to the actual total number of edges. Figure 9 shows test effectiveness for the four
algorithms explained earlier.

As shown above, the last two algorithms reach to approximately 100% effectiveness by
generating less than 300 test cases.

To evaluate test generation efficiency in the generated test cases, the total number of arcs
visited in the generated test cases is calculated to the total number of arcs or edges in the
Application Under Test (AUT). File-Save, Edit-Copy, Format-Font are examples of arcs or edges.
An algorithm 1s developed to count the total number of edges 1in the AUT by using the parent info
for each control. (This is a simple approach of calculating test efficiency. More rigorous efficiency
measuring techniques are planned in future work). Of those tested applications, about 95% of the
application paths can be discovered and tested using 200-300 test cases.

Critical path testing and test case prioritization: Critical paths are the paths that cause test
execution to be slow, or the paths that have more probability of errors than the other testing paths.
Here are some of the critical path examples.

* Anexternal API or a command line interface accessing an application
+ Paths that occur in many tests (in a regression testing database)
¢+ The most time consuming paths

Three algorithms are developed to find critical paths automatically in the AUT.

Critical paths using node weight: In this approach, each control is given a metric weight that
represents the count of all its children. For example if the children of File are: Save, SavedAs, Close,
Exit, Open, Page Setup, and Print, then its metric weight is seven (another alternative is to
calculate all the children and grand children). For each generated scenario, the weight of that
scenario 18 calculated as the sum of all the weights of its individual selected controls. Table 215 a
sample cutput generated that calculates the weight of some test scenarios for an AUT.

To achieve coverage with test reduction, the algorithm selects randemly one of those scenarios
that share the same weight value as a representative for all of them. An experiment should be done
to test whether those scenarios that have the same weight can be represented by one test case or
not (1.e., from a coverage perspective).

Here are some observations about the results of this critical path selection using cur Notepad

AUT.

¢+ The maximum scenario weight is 40. Many test scenarios have the same maximum weight

+ Bince the same weight usually indicates similar tree depth, we can automate the selection
process (by selecting arbitrarily one of those that have equal weight). This may give us a very
reasonable test cases’ reduction

*+ Tree weight values are relative and dependent on the main entry selection

« Ifthereis a node that does not have children, its total metric count is like its parent count as
its metric count =0

Other alternative 1s to set a mimimum weight required to select a test scenario and then
generate all test scenarios that have a weight higher than the selected cut off. The two criteria that

13

J. Software FKng., 5 (1): 1-19, 2011

Tahble 2: Test scenarios’ weights metric

Test scenario Weight (No. of controls)
NOTEPADMAIN FILE PRINT PRINTTAB PRINTBUTTONZ2 28
NOTEPADMAIN FILE PRINT PRINTTAB PRINTLABEL3 28
NOTEPADMAIN FILE PRINT PRINTTAB PRINTLABEL1 28
NOTEPADMAIN FILE PRINT PRINTTAB PRINTBUTTON1 28
NOTEPADMAIN FILE PRINT PRINTTAB 28
NOTEPADMAIN FILE PRINT 28
NOTEPADMAIN PAGESETUP PAGESETUPGROUPBOX2 PAGESETUPLABEL7 34
NOTEPADMAIN PAGESETUP PAGESETUPGROUPBOX2 PAGESETUPLABELG 34
NOTEPADMAIN PAGESETUP PAGESETUPGROUPBOX2 PAGESETUPTEXTBOX3 34
NOTEPADMAIN PAGESETUP PAGESETUPGROUPBOX2 PAGESETUPLABELS 34
NOTEPADMAIN PAGESETUP PAGESETUPGROUPBOX2 PAGESETUPTEXTBOX1 34
NOTEPADMAIN PAGESETUP PAGESETUPGROUPROX2 PAGESETUPTEXTBOX4 34
NOTEPADMAIN PAGESETUP PAGESETUPGROUPROX2 PAGESETUPTEXTBOX2 34

Tahble 3: Weight algorithm reduction percentages

AUT Total No. of test scenarios Coverage reduction percentage
Notepad 174 94.25
FP analysis 28 82.14
WordNet 8 75.00
Gradient 153 92.81
GUI controls 51 88.23
Hover 10 90.00

affect the critical path weight factor are the number of nodes that the path consists of and the
weight of each node. This technique can help us dynamically define the longest or deepest paths
in an application. For example, all the 40 weight values in Notepad as the AUT belong to the node
that has the page setup form.

Table 3 shows the reduction percentage of selected seenarios using the above selection algorithm
{given the assumption that the same weight scenarios can be represented by one as explained
earlier). As the tool uses reflection to generate XML files from the AUT, this tool can handle only
managed code in which the application keeps information about itself. Application from C++ for
example, cant be tested using this tool. The Notepad application listed in this experiment 15 a
managed version developed to have similar functionalities of MS Notepad.

Critical path level reduction through selecting representatives: This technique approaches
test selection reduction through selecting representative test scenarios. Representatives are elected
from the different categories, classes or areas to best represent the whole country. In this approach,
the algorithm arbitrarily selects a test scenario. The selected scenario includes controls from the
different levels. Starting from the lowest level control, the algorithm excludes from selection all
those controls that share the same parent with the selected control. This reduction shouldn’t exceed
half of the tree depth. For example if the depth of the tree is four levels, the algorithm should
exclude controls from levels three and four only.

We assume that three controls are the least required for a test seenario (such as Notepad-File-
Exit). We continuously select five test scenarios using the same reduction process described above.
The selection of the number five for test scenarios is heuristic. The ideais to select the least amount

14

J. Software FKng., 5 (1): 1-19, 2011

Tahle 4: Level reduction test results’ sample

Test scenarios Total percent of test cases’ reduction (%)
NOTEPADMAIN, PRINTER, PRINTERBUTTON1,,,

NOTEPADMAIN SAVE SAVELABELT,,
NOTEPADMAIN,EDIT,FIND,TABCONTROL1, TABFIND, FINDTABBTNNEXT
NOTEPADMAIN, FILE PRINT,PRINTTAB, PRINTLABEL?,

NOTEPADMAIN SAVE , SAVELABELS 65.1
NOTEPADMAIN, FILE PRINT,PRINTTAB, PRINTLISTBOX1

NOTEPADMAIN, FONT,FONTLABELZ2

NOTEPADMAIN, HELPTOPICFORM,HELPTOPICS,SEARCH,BUTTON1

NOTEPADMAIN,FONT FONTTEXTBOXZ,,

NOTEPADMAIN, PRINTER, PRINTERBUTTONZ,,, 41.687
NOTEPADMAIN,FILE,PRINT,PRINTTAB, PRINTGROUPBOX1

NOTEPADMAIN, PAGESETUP,PRINTER,

NOTEPADMAIN, FONT,FONTLISTBOX2,,

NOTEPADMAIN,OPEN,OPENFILELABEL4,,

NOTEPADMAIN SAVEAS,SAVEFILECOMBOBOX2, 51.56

of test scenarios that can best represent the whole GUI. Table 4 is a sample output of measuring
test case reduction using the above algorithm. The five selected scenarios are listed along with their
total reduction.

Weight controls from user sessions: The previously described algorithms for critical paths’
selection depend on statistics pulled from the implementation model. As an alternative, we can
analyze several user captured sessions (e.g. from testers or users in beta testing) to automatically
weight the GUI controls. User session data is the set of user actions performed on the AUT from
entering the application until leaving it. We can analyze several user captured sessions (e.g., from
testers or users in beta testing) to automatically weight the GUI controls or widgets. User session
data is the set of user actions performed on the Application Under Test (AUT) from entering the
application until leaving it.

We can classify a contrel, or a pair of controls, according to the number of times they are
repeated in a user session. User sessions are likely to detect faults in the application that are not,
predictable in earlier testing phases. Another advantage of testing with user sessions is that testing
is possible in the absence of specifications or in the presence of incorrect and incomplete
specifications, which often occurs in software development.

The session logs all the controls that are executed in the different scenarios. A simple count or
percentage is given to each control depending on how many times it is listed in those scenarios. The
test scenarios should include all primary and major use cases for the AUT. The controls’ weights
{calculated from user sessions) can drive the test case generation and execution. Theoretically all
controls should get the same weight in the generated test suite. However, in real scenarios this
may not be true. We can use the weighing method for single controls or for a sequence of controls
{result from a specific use case).

We may cluster the controls, or sequence of controls, aceording to their usage from user sessions
into three levels; heavily used, medium and low. Depending on the availability of the resources for
testing, we may choose one or two categories and generate test cases that cover those contrels in
the categories with a proportion to their weight or occurrence. The developed algorithm in this
research is considered as a hybrid technique that uses some of the capture/ reply processes. In a
capture/ reply tool, the same user session that is captured in the manual testing is executed. In this

15

J. Software FKng., 5 (1): 1-19, 2011

1, NOTEPADMAIN, FILENEW TXTBODY,
2, NOTEPADMAIN,FILE SAVE AS,SAVEFILEBUTTONL,,,

Fig. 10: A sample of generated test cases (generic)

Control Event Date Time

File new Menu Click 10/3/2008 11:51:23 AM File new Mouse Down 10/3/2008 11:51:23
AM File new Mouse Up 10/3/2008 11:51:23 AM

New txtbody Menu Click 10/3/2008 11:51:23 AM New txtbody Mouse Down 10/3/2008
115123 AM New txtbody Mouse Up 10/3/2008 11:51:23 AM TxtBody Mouse Move
10/3/2008 11:51:23 AM TxiBodv Key Down 10/3/2008 11:31:23 AM TxtBody Key Up
10/3/2008 11:51:23 AM

(Test) is written in the document 10/3/2008 11:31:23 AM (Test) is written in the document
10/3/2008 11:51:24 AM

SaveFilebutton]l Mouse Move 10/3/2008 11:51:24 AM SaveFilebuttonl Mouse Button Down
10/3/2008 11:51:24 AM SaveFilebutton]l Mouse Button Up 10/3/2008 11:51:24 AM File
SAVE AS Menu Click 10/3/2008 11:51:24 AM

File SAVE AS Mouse Down 10/3/2008 11:51:24 AM

File SAVE AS Mouse Up 10/3/2008 11:51:24 AM SaveFilebuttonl Mouse Move 10/3/2008
11:51:24 AM SawveFilebuttonl Mouse Button Down 10/3/2008 11:51:24 AM SaveFilebuttonl
Mouse Button Up 10/3/2008 11:531:24 AM

Fig. 11: Log file output of a sample test case

approach the controls’ weights are extracted from the manual testing to guide test case generation
and execution. The reason for considering this track rather than using capture/ reply test execution
and validation is to avoid the dependency on the absolute location of the screen and controls that
is required by capturefreplay tools. Having a hybrid solution may give us the best of both and
utilize the accumulative experience and knowledge in different technologies.

In order to record user events, we implemented in our C# application Alsmadi and Magel,
{(2007), theinterface IMessageFilter that 1s used to capture messages between Window applications
and components. In the AUT, each GUI control that is triggered by the user is logged to a file that
represents the user sessions. The minimum information required is the control, its parent and the
type of event. The user session file includes the controls triggered by the user in the same sequence.
Such information is an abstract of the user session sequence. In many cases, the same control is
repeated several time (due to the nature of logging the window messages), The implementation will
get rid of all those controls repeated right after each other. The same information can be extracted
from the events written to the event log.

Test case execution and verification: For test verification, a log file 1s created to track the
events that are executed in the tool during the execution process. In a simple example, Fig. 10
shown below, two test cases are generated that write a text in Notepad and save it to a file. Those
test cases are generated using the tool.

The first test case opens a new document and writes to it. As part of the default input values,
we set for each control a default value to be inserted by the tool through execution. A textbox writes
the word “test” or the number “0” whenever it is successfully called. A menu item is clicked, using
its parent, whenever it 1s successfully called. For example, if Save 1s called as a control, File-Save
as an event 1s triggered. We should have tables for valid and invalid inputs for each GUI control.
The second test case opens the save File dialogue and clicks the OK or accept button
(SaveFilebuttonl), to save the document. Here is the corresponding log file output for the above
test cases (Fig. 11).

16

J. Software FKng., 5 (1): 1-19, 2011

Since the test execution process is subjected to several environment factors, the verification
process is divided into three levels,

* Inthe first level the tool checks that every control in the test suite is successfully executed. This
step 1s also divided into two parts. The first part is checking that all controls executed are
existed in the test suite. This is to verify that the execution process itself does not cause any
extra errors. The second part that ensures all controls in the test suites are executed tests the
execution and its results. In the implementation of this level, some controls from the test
scenarios were not executed. This 1s maybe the case of some dynamic execution or time
synchronization issues where some controls are not available the time they are expected

« Inthe second level the tool checks that the number of controls matches between the two suites

* Inthethird level, the tool checks that the events are in the same sequence in both suites. The
verification process 1s automated by comparing the test cases’ file with the log file. Time stamp
is important to verify the correct sequence of events. The controls in the test case suites are
written to a sorted list and the execution sequence 1s also written to another sorted lists. To
verify the results of the test execution, the two lists are compared with each other. Upon testing
several applications, a small percent of contrels generated in the test cases and not executed.
Timing synchronization causes some controls to be unavailable or invisible within their
execution time. Regular users “wait” for a new menu to be opened. This time varies depending
on the application, the computer and the environment. Time synchronization and some other
dynamic issues are part of the future research goals

One approach for the GUI test oracle 1s to have event templates. For each test scenario listed,
expected results are written in a way that can be automatically verified. This requires some level
of abstraction where similar events are abstract into one event (like the saving process). This
proposal does not mean exhaustively testing all probable events. By selecting critical events for
automation and abstracting similar events we will get a valuable state reduction that makes the
number of GUI states more practical in terms of testing.

CONCLUSION

Developing a user interface test automation tool faces several challenges. Some of those
challenges are: Serializing the GUI widgets, test results’ verification, time synchronization issues,
handling dialog boxes, testing data dependent systems, and building error logging and recovery
procedures. Some techniques, in test case generation, execution and verification, are explained in
principles in this article. Test case generation from user sessions 1s explored that represent real
usage of the application and focuses on the application areas where they can be heavily used by
users. A logging procedure is implemented to compare the executed suite with the generated one.
A formal verification procedure is presented that compare and verifies the output of the execution
process with its input. Another track of verification i1s suggested. This track requires building
templates for events. For each event pre conditions, post conditions and expected results are
included. More elaborations and verifications are required to prove the effectiveness of the
suggested approaches. Automation of the first few test cases is expensive; beyond that they become
much cheaper to develop and execute.

Test automation can only be successful when we keep in mind that testing in general and
particularly automated testing, is easily made obsolete by some changes in the application and

17

J. Software FKng., 5 (1): 1-19, 2011

environment. In GUI, it is difficult to reach a high level of test adequacy in generating test cases
that cover all possible combinations. GUI state reduction is needed to make testing all or most
possible states feasible.

Test case generation algorithms are automatically developed to ensure test adequacy or
coverage which refers to the percentage of the application that test cases cover. Test cases will be
automatically generated, using a developed tool (i.e., GUI Auto) for this purpose, from the
implementation transformed model. Different algorithms are produced. Their coverage 1s compared
and tested using execution and verification. Some APIs are developed to allow the automatic
execution of the generated test cases on the actual application. The tocl uses reflection to recreate
the code from its managed output. There are also some verification techniques produced to compare
actual outputs with expected ones. Some execution techniques are developed such as a monkey
testing technique, where the tool executes random sequence of events to test the robustness of the
developed product. Although such sequence of events is not possible in real usage scenarios,
however, good application should never crash. All those algorithms and techniques are
implemented and evaluated in the developed tool. Eeferences in literature can be found to the
developed tool and some of those experiments and algorithms.,

In critical path testing, several algorithms such as: weighting algorithm, genetic algorithm, and
representative algorithm are produced as techniques to select best representatives from test cases
out of large numbers of test cases in a test oracle or database. Another trend that will be introduced
is the using of user sessions in test case generation and execution. User sessions can be very useful
inputs for test cases. Those scenarios can be more real and test cases are more accurate and
represent actual user scenarios or usage if compared with hypothetic test cases.

In this approach, there is state reduction from selecting specific properties to parse. Those
properties are more relevant and critical than the rest for the testing process. Total properties of less
than 10 are selected. The idea of test automation is not to automate everything; we automate to
save time and effort. The other issue that causes state reduction is considering the hierarchy. In
flat state diagrams, we assume that any state is reached from another state once certain
preconditions are achieved. In GUT terms it means that any control is accessible from any other one.
This 1s not true in GUI states, as usually controls are only accessible through their parent controls.
We can also get GUI states reduction by abstracting the processes. For example, the saving process
has several intermediate processes (File-save-as, File name, type... ok), but what 1s important is the
end state where there are certain results i1f the process 1s successful (e.g., a File with certain content,
is saved to a certain location) and other results if it is not.

We don't automate testing everything. We automate testing those frequently repeated tasks.
We don't automate those tests that require user validation or those tests that require special
dynamic or time synchronization consideration (such as connecting to a database or verifying the
overall acceptance of a GUI).

REFERENCES

Alsmadi, I. and K. Magel, 2007, GUI path oriented test generation algorithms. Proceeding of
TASTED (569) Human-Computer Interaction, March 14-16, Chamonix, France, pp: 216-219,

Alsmadi, [., 2008, The utilization of user sessions in testing. Proceedings of the 7th IEEE/ACIS
International Conference on Computer and Information Science, May 14-16, Portland, OR.,
pp: b81-585.

18

J. Software FKng., 5 (1): 1-19, 2011

Ames, A K. and H. Jie, 2004, Critical Paths for GUI Regression Testing. University of California,
Santa Cruz.

Godase, S., 2005, An introduction to software test automation. http:/fwww.indicthreads.
com/13289/an-introduction-to-software-test-automation/#.

Hanna, 5. and A. Abu Ali, 2011. Platform effect on web services robustness testing. J. Applied Sa1.,
11: 360-366.

Makedonov, Y., 2006, Managers guide to GUI test automation. Software Test and Performance
Conference.

Mao, Y., F. Boqin, H. Zhenfang and Z. Li, 2008. Important usage paths selection for GUI software
testing. Inform. Technol. J., 5: 648-654,

Memon, A M. 2001. A comprehensive framework for testing graphical wuser interfaces.
Ph.D. Thesis, University of Pittsburgh, USA.

Memon, A.M., 2002, GUIT testing: Pitfall and process. Software Technol., 35: 87-88,

Memon, A.M. and M.L. Soffa, 2003, Regression testing of GUIs. Proceedings of the 9th European
Software Kngineering Conference Held Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Sept. 1-5, Helsinki, Finland, pp: 118-127.

Memom, A., I. Banergjee and A. Nagarajan, 2003, GUI mpping: Reverse engineering of graphical
user interfaces for testing. Proceedings of the 10th Working Conference on Reverse
Engineering, Nov. 13-16, Computer Soiety, pp: 260-269.

Memon, A.M., 2004. Developing testing techniques for event-driven pervasive computing
applications. Department of Computer Secience. University of Maryland,
http://fwww.cs.umd.eduf~atiffpapers/MemonBSPC2004 pdf.

Memon, A. and Q. Xie, 2005, Studying the fault detection effectiveness of GUI test cases for rapidly
evolving software. IEEE Trans. Software Eng., 31: 884-896,

Memon, A.M.,, 2008. Automatically repairing event sequence-based GUI test suites for regression
testing. Proceedings of ACM Transactions on Software Engineering and Methodology
(TOSEM), November 2008, New York, USA., pp: 1-35.

Mustafa, G., A.A. Shah, K.H. Asif and A. Ali, 2007, A strategy for testing of web based software.
Inform. Technol. J., 6: 74-81.

Nistorica, G., 2005, Automated GUI testing., http:/fwww.perl. com/pub/2005/08/11
fwind2gutest. html.

Sampath, S., 2006, Cost effective techniques for user session based testing of web applications.
Ph.D. Thesis, University of Delaware.

Sengupta, G.J., 2010, Regression testing method based on XML schema for GUI components.
J. Software Kng., 4: 137-146.

Sprenkle, 8., E. Gibson, 8. Sampath and L. Pollock, 2005, Automated replay and failure detection
for web applications. Proceedings of the 20th IEERE/ACM International Conference on
Automated Software Engineering, Nov. 7-11, Long Beach, USA., pp: 253-262,

Xie, Q., 2006. Developing cost-effective model-based techniques for GUT testing. Proceedings of the
28th International Conference on Software Engineering. May 20-28, Shanghai, China,
pp: 997-1000.

Xin, W., H. Feng-Yan and Q. Zheng, 2010, Software reliability testing data generation approach
based on a mixture model. Inform. Technel. J., 9: 1038-1043.

19

	Activities and Trends in Testing Graphical User Interfaces Automatically
	Repository Citation

