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ABSTRACT

“Treatment of Produced Water Using Ferrate and Directional Solvent Extraction.”

(May 2021)
Sean X. Thimons, B.S., Texas A&M University — San Antonio

Graduate Research Advisor: Dr. Walter Den

Oil field fracking operations creates by-product “produced water” that is highly
variable in composition and difficult to treat. This study aims to examine two novel
treatment processes together in improving the quality of a synthetic, hypersaline
produced water, and examines if effluent would be suitable for reuse. Here, we examine
the ability of ferrate (VI) to coagulate organic and inorganic compounds to reduce
turbidity while the efficacy of diisopropylamine (DIPA) in water extraction from the
subsequent hypersaline solutions was also assessed under a variety of temperature
ranges. For the final product water that is separated and treated through both
processes, various characteristics were examined. Of note, significant reductions in
turbidity (95.07% - 97.66% removal) and salinity (94.2% - 99.13% rejection) were
observed at a variety of hypersaline concentrations and temperature ranges. Results
indicate that this treatment process may show a favorable per-unit treatment cost

compared to conventional processes.
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CHAPTER I: INTRODUCTION

NATURE OF THE PROBLEM

Within any industry, waste production is a major concern from an operational
perspective. It is well established within the literature that waste management and
disposal (irrespective of industry) occupies a significant portion of capital and
operational expenditures, and innovation in reducing those costs is becoming a
promising sector to focus on for a variety of benefits (e.g.: Abdallah et al., 2021). For
example, reductions to operational costs and environmental risks as well as increases
in productivity have been documented (e.g.: Brunner & Rechberger, 2015) among other
side-effects on optimizing waste management. A more prominent shift in how waste
management is perceived could be a result of more conventional economic forces exert
on an industry. Market forces such as consumer demand, speculation, and other
externalities have forced industries into examining all areas for optimization given the
possibility of further tangential benefit that could be derived from it while reducing
overhead costs. The oil and gas (O/G) industry is an example of this. Novel
(“unconventional”) methods of production (such as through hydraulic fracturing) and
examining the waste stream from exploration and production appears to be the best
candidate for decreasing operational costs or increasing profitability for this industry
given the wild shifts’ in consumer and market demand.

Unconventional oil and gas (UOG) development and exploration within the

United States over the last decade has allowed a previously unavailable source of fossil

T As an example, Jan 6 2020 — Apr 20 2020, where the daily price for West Texas Intermediate crude oil
pricing went from $63.27/ bbl to $-36.98/bbl (U.S. Energy Information Administration, n.d.)



fuels to be available for consumption. Here, UOG production is defined as being
sourced from low-permeable shale, sandstone, and carbonate rock formations (US
EPA, 2013) through stimulation via processes such as hydraulic fracturing (HF).
Estimates from U.S. Energy Information Administration (EIA) indicate that production
methods such as HF for UOG accounted for roughly 65% of domestic crude oil and
natural gas production in 2019, compared to 2% from 2000. UOG does possess notable
disadvantages; the U.S. Environmental Protection Agency (EPA) identified several
concerns with respect to UOG production: air pollution and contamination of
groundwater and surface waters from production and disposal of wastewaters, the
unresolved impact of discharge of waste into underground wells for disposal, and the
full extent of the stress on water supplies needed for exploration and production (US
EPA, 2013). Complicating these concerns is the myriad of regulations (and subsequent
exemptions) that exist at a variety of levels of legislation governing oil and gas
exploration and the nature of public perception and the resulting intractable relationship
regarding energy generation.
PROBLEM SCOPING
Produced Water - Definition

Produced water is a by-product of the oil and gas exploration process. There is
not a totally agreed upon definition of it (Clark & Veil, 2009 versus Orem et al., 2014, as
an example)?, but for this proposal | follow the definition® provided by Walsh (2019):

“...any water stream that flows from an oil or gas producing reservoir...[including]:

2 Synonyms include: brine, saltwater, formation water, flowback water, formation brine, co-produced water
3 Provided explicitly to prevent any misunderstanding or alternative interpretation.



formation (reservoir) water from primary production...interstitial water...condensed
water...water from water flood, chemical enhanced oil recovery, steam flood, etc.” This
is an admittedly wide-ranging definition, although some differentiation can be made
based on the lifespan of the well as the overall composition of the water removed will
change over time. Initially, water may be used as a carrying fluid for cutting through rock
and returned to the surface. This “flowback water” is widely considered to be the
hardest to treat (Blewett et al., 2017; Walsh, 2019) due to additives incorporated into the
carrying fluid for performance gain and constituents introduced from the surrounding
rock. Orem et al. (2014) considers flowback water to fall within the produced water
“schema”, while Walsh classifies it as a separate waste stream due to its inherent
purpose; the flowback water is not “created™ as a function of the drilling of the well.
After drilling is completed, further stimulation of the well may occur, where water may be
returned to the surface from a variety of processes (both natural and anthropogenic).
This water, regardless of its origination or purpose, will vary in composition due to the
geology of the area, additives to increase performance of the fracturing operation, or the
nature of the hydrocarbon being reached.
Importance of Treatment
Disclosure of composition of produced water

A lack of comprehensive legislation at a federal level and a disparate
implementation of state-level regulation has created an unclear understanding of the

composition of HF fluid. The on-going development of the FracFocus database aims to

4 Thus the definition of “produced” from water already present within the reservoir.



reduce this information gap while being accessible to wider public in the interest in
disclosure. The FracFocus database allows an individual to search for a well using a
variety of parameters including by date of operation, operator, geographical location,
and ingredients through CAS number. According to this database, several states have
some level of reporting for its composition, but the database remains incomplete. It
should be noted that some operators and companies voluntarily disclose the
compositions of HF fluids where able, but proprietary formulations remain elusive.
Produced water volumes

By volume, produced water is the largest source of waste from hydraulic
fracturing and remains a difficult by-product to address. Volumes of water and
hydrocarbons being produced are (unsurprisingly) inconsistent even from the same
well. Averages at the initial production stage can be as low as 3 barrels for every barrel
of hydrocarbon recovered, and as high as 8-10 barrels at the end of a well’s lifetime
(Clark & Veil, 2009). Various estimates of total domestic, onshore produced water have
been suggested to be as high as 14-21 billion barrels per year (Clark & Veil, 2009). With
such a large volume of waste being produced, there has been a rising interest in
determining the relationship between water usage for UOG development, the amount of
energy being produced, and the amount of waste being co-produced. Work such as
Kondash & Vengosh (2015) and Scanlon et al. (2014, 2017, 2020) have highlighted this
relationship and the shift in perception in how water usage is viewed. Compared to
more conventional O/G development, these authors suggest that UOG is more likely to
be constrained by waste disposal operations than the more conventional perception of

being limited by available water supply. These authors do not discount the considerable



amounts of water needed for UOG exploration and development, nor do they ignore the
effects of permanently removing water from the larger hydrological cycle through deep
injection wells. Rather, they seek to emphasize the unique nature of this waste stream.
Breakdown of composition of produced water

Secondary to the considerable volumes that are produced with UOG is the
composition of the produced water. Due to the underlying nature of the geologies that
the hydrocarbons cohabitate, large quantities of salts are typically present within
solution. The estimated TDS (total dissolved solids) of the waters can range from above
seawater® to values exceeding seven times that of seawater (FracFocus Chemical
Disclosure Registry, n.d.). Under the EPA’s National Pollutant Discharge Elimination
System (NPDES), these waste streams would need significant treatment to be able to
be discharged to surface waters, while outright bans exist for some reuse®
opportunities. Jiménez et al. (2018) identified several parameters that would need to be
met based on current regulations on surface discharge and for potential reuse.

In lieu of complete disclosure by operators and companies, a considerable
amount of effort from other interested parties has gone into determining what the exact
nature of the composition of produced water and its effects across a multitude of
species. Work such as by Danforth et al. (2020) has tried to illustrate the lack of

prioritization of treating for these unknown compounds, with an estimated 24% being

5 Conventionally viewed as 35,000 mg/L TDS, with water containing 3,000-10,000 mg/L TDS considered
as brackish, in excess of 10,000 mg/L TDS as saline, and in excess of 35,000 mg/L as brine. (Godsey,
n.d.). Fresh water is defined as under 1,000 mg/L TDS by WHO, and under 500 mg/L TDS by US EPA
(US EPA, 2018; World Health Organization, 1984).

6 Here defined as being treated for out-of-industry usage, while define recycling to mean end-usage within
the industry, such as further operations.



able to be readily identified, and 56% having no data available from a variety of
databases on potential toxicological effects. Radionuclides (termed in the literatures and
industry as Naturally Occurring Radioactive Materials, rather than the diagnostic-
purpose tracers used in mapping) and heavy metal contamination are also of concern
for both operators and communities (Vengosh et al., 2014). More conventional solids
such as sands or silicas see usage for breaking or keeping fissures within the rock open
during stimulation, with clays and other viscosity-increasing additives used for sealing
and thickening purposes (Clark & Veil, 2009). Finally, a variety of agents for corrosion
resistance, biocide control, and pH control is often added. This complicated formulation
presents a considerable barrier to conventional treatment; where one process may
seem viable, another constituent usually prevents full efficacy from being realized
(Chang et al., 2019).
Texas water scarcity and relationship to oil and gas exploration

Within the state of Texas, water resources availability is complicated by the
nature of ownership compared to other states. Surface waters are owned by the state
with access controlled by a system of permitting for withdrawals based on age of the
permit, with permits transferable to other entities (Griffin & Characklis, 2002).
Conversely, ground water is largely controlled through the ‘rule-of-capture’, where
property owners are able to withdraw and use as much as they please, even to the
detriment of their neighbors. Groundwater withdrawal can be mediated by larger
agencies (“groundwater conservation districts”) tasked with managing over-exploitation,

protection, and movement of water within each district (Cook & Webber, 2016).



Cook & Webber (2016) and Scanlon et al. (2020) also summarized the nature of
water use needed for HF. Under current projections aligned with state’s \Water Plan, 25-
31% of groundwater supplies’” would be used by HF alone. Movement of water to
support this industry can be limited by conservation districts (through permitting or
outright banning), or through appropriating groundwaters for other use. Cook & Webber
(2016) also noted that due to the nature of the product being produced, water costs
were adsorbed into the larger operational/ capital expenditures (e.g.: drilling) and were
thus insensitive to the larger regional water supply issues than other industries (e.g.:
agriculture) were not able to avoid. New water acquisitions with the O/G industry
continues to be largely dictated by consumer demand for hydrocarbon products.
Legal issues involving produced water

Another consideration, but not fully discussed here are the legal issues
surrounding produced water. As an example, recent work by Waggoner (2020) has
outlined the difficulties involved with the nature of the ownership of produced water
under Texas law (Robinson v. Robbins Petroleum Corp., Inc., (1973) compared to Tex.
Water Code Ann. § 35.002(5); Tex. Admin. Code § 297.1(21)). More research is needed
to assess the legal nature of this waste stream to better determine where it exists within
the waste management strategy. Action at a state level, such as in New Mexico (“New

Mexico Land Boss Ends Fresh Water Sales for Oil and Gas,” 2020), suggests that the

7 Permian and Eagle Ford tight oil plays. Scanlon et al. (2020) noted that for the Eagle Ford play, HF in
conjunction with other industries over the 50-year period is projected to use up to 250% of groundwater
supplies in that area.



usage of water within the mining industry is being placed under greater scrutiny given
the increasing stress on water supplies available for use.
Economic cost consideration

Work by Collins (2018, 2019a, 2019b) has offered preliminary research into the
economic value in treating produced water. When properly optimized, the tantalizing
possibility of a multibillion-dollar market from disposal of produced water, treatment for
reuse, and sourcing water for operations in the various oil plays can be visualized. As
discussed in the previous section, water usage is largely dictated by consumer demand
given the relatively low influence water costs impose on the greater expenditures
needed for exploration. Conversely, waste disposal exercises significant influence on
costs, so operators choose the most cost effective option that regulatory policy and
weighing of (potential future) liability allows (Puder & Veil, 2006). As water resources
become constrained, alternatives to conventional management of produced water (e.g.:
injection for disposal) should become more attractive.
Global water supplies and water scarcity

As previously discussed, the water used for O/G exploration and development is
considerable, with withdrawals estimated at 248 billion gallons, most of which is
returned as produced water (Kondash & Vengosh, 2015). This amount is difficult to
visualize, especially compared to global water supplies. The current amount of fresh
water available for use is estimated to be at 0.3% of global water, with 0.014% to be
both easily accessible and suitable for human consumption (Eakins & Sharman, 2010).
Of that, 19% of the fresh water available to humanity is used for industrial usage, 11% is

diverted for municipal purposes, and approximately 70% is used for agricultural



purposes (Food and Agriculture Organization, n.d.; Hanasaki et al., 2013). The large,
remaining portion of global water is seawater or inaccessible due to being locked up as
ice. Kondash and Vengosh (2015) therefore suggest that while the water used for O/G
exploration is a relatively small fraction of the water available for (global) human use,
the increasing waste volume that is difficult to treat and the removal of water is the real
issue. Indeed, many of the areas that feature heavy O/G development are also some of
the most water scarce areas and complete with other industries for available water
resources (Scanlon et al., 2020).

Water scarcity, as defined by Grey and Sadoff (2007), is the “availability of an
acceptable quantity and quality of water for health, livelihoods, ecosystems and
production, coupled with an acceptable level of water-related risks to people,
environments and economies.” The statistics are sobering: 71% (4.3 billion) of the
current global population by some estimates experiences “moderate-to-severe water
scarcity ,” 66% (4.0 billion) will experience “severe water scarcity ” at-least one month of
the year, up to 2.9 billion for “4-6 months”, and 0.5 billion “persistently year round”
(Mekonnen & Hoekstra, 2016). This roughly equates to roughly 35% of the population
having less than 1000 m? / capita / year for usage (Kummu et al., 2010). Notably, the
terms “water scarcity”, “water crisis”, and “water shortages” are often used
interchangeably within many fields, with no clear distinction as to what constitutes a
more severe event over another. In response to the growing need for clear
communication, some institutions — such as the World Economic Forum (WEF) — have

changed how they are perceived from a problem-solving approach (see Global Risk
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Impact reports 2009-2019), redefining what was “water shortages” as “water crises”
indicating some progression of severity.

According to the WEF, water crises and water shortages have dominated the top
five most impactful issues to affect the global population since 2011 (World Economic
Forum, 2019). In spite of this, the same report continues to recognize the likelihood of
such an event to be slightly more likely than the “failure of a regional or global
governance,” “inter-state conflict,” or “large scale involuntary migration”, as the WEF
now views water scarcity to be a social issue. What many agree on, is that water
management and water usage is fast becoming a priority. While there is enough fresh
water for the entire current global population (presuming a highly theoretical, evenly
balanced distribution), there exists inequality at all levels due to factors ranging from the
socio-political and economic to temporal and simple physical variations (Van der
Bruggen et al., 2010). Complicating current supply demands, the global population is
currently expected to grow to 9 billion by 2045 (Department of Economic and Social
Affairs, United Nations, 2016). With such a milestone in mind, and pronounced existing
demand upon the natural resources available, a projected reduction in global availability
of 30% of fresh water by 2025 suggests higher rates of water scarcity to be a fast-
approaching reality (Richard, 2015), irrespective of relative usage amounts.

Current Technologies

The growing shift from conventional oil and gas (COG) to unconventional oil and
gas (UOG) development has forced the industry to evaluate how this produced water
can be repurposed, especially given the growing constraints of available fresh water

supplies and how public perception of how that water should be used. Surveys of the
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field have documented the increasing incorporation of conventional and unconventional
treatment pathways into industry in an effort to minimize the fresh and brackish water
withdrawals that UOG demands, while also examining the effluent qualities for reuse
(Al-Ghouti et al., 2019; Fakhru’l-Razi et al., 2009; Jiménez et al., 2018). Literature, such
as Walsh (2019), have echoed this shift as the adoption from desalination and municipal
processes rises due to the well-established nature of these sectors and cost of
operations.
Produced water management

Previous strategies of managing produced water as documented by Arthur et al.
(2011) and Clark & Veil (2009) are useful as a historical reference to the various
management schemes that are still in use. While the overall percentages cited within
such literature have changed, they are still useful to emphasize from where the industry
and need for treatment came. At the time of their publication, they described a variety of
treatment pathways (from domestic production, excluding off-shore), summarized here:
underground injection, reinjection for enhanced recovery, evaporation, offsite
commercial disposal, and beneficial reuse. Of the total volume handled, less than 2%
was estimated to be repurposed for beneficial reuse with over 90% being disposed of
through underground injection (American Petroleum Institute, 2000). The remaining
percentages were used for enhanced recovery or surface discharge after treatment.
Additional produced water treatment

More recently, the shift from managing the waste stream to treating to alternative
usage has become more attractive due growing concerns regarding underground

disposal injection and induced seismicity (Keranen & Weingarten, 2018; Ries et al.,
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2018), as well as constricting water resources. Briefly discussed here, treatment of
produced water to create an effluent suitable for either recycling or reuse.

Recycling of produced water is focused on removal of hydrocarbons and solids
from solutions so that the waste stream can be reinjected for further recovery. This is
largely accomplished through physical and limited chemical means, such as the
employment of cyclones and coagulants (Fakhru’l-Razi et al., 2009), while ignoring
salinity due to the shift in salt-tolerant formulations for fracking (Halliburton, 2013).

Treatment for reuse opportunities can necessitate considerable cost and
investment, mostly pertaining to relevant regulatory requirements. While all states
adhere to the minimum that federal legislation requires, some states have higher
requirements for reuse, usually revolving around characteristics such as salinity/
sodicity, pH, organic loading, and toxicity of compounds (Puder & Veil, 2006). As
discussed in previous sections, parallel to the development of new treatment options is
the assessment of constituents effects to organisms (Danforth et al., 2020). Work in this
area is critical to assessing if a technology or management scheme is viable in the long-
term. Many options that operate past physical treatment processes (e.g.:
chemical/secondary, tertiary treatments) are focused on reducing these constituents.

PURPOSE OF THE STUDY
Research Question

The purpose of this study looks to examine several facets of treating produced
water to an acceptable standard for either recycling or reuse opportunities. We seek to
examine several gaps in the usage of these treatments, primarily revolving around the

conditions produced water provides.
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Currently, there is little work on using use ferrate (VI) as an effective
pretreatment of incoming waste streams under saline or brine conditions.
Correspondingly, while there is research on using ferrate (VI) as an advanced oxidative
treatment in more conventional waste streams, there are few reasonable examples to
illustrate the similar potential for its treatment of produced water, especially under the
prominent saline conditions. Despite that, many currently used methods of treating
produced water for reduction in turbidity and organic loading of water suffer from a
variety of operational constraints. Therefore, an investigation into if ferrate (VI) can be
used for reducing turbidity and the organic loading of the water while evaluating its
potential cost performance against other treatments is needed.

Directional solvent extraction (DSE) occupies a similar role to ferrate (VI)
compared to its conventional treatment alternatives. Currently, it remains an
experimental treatment method, and few have examined it under more challenging
operating conditions. DSE has primarily been examined for traditional desalination
efforts, but few examples show the potential to reject turbidity and dissolved
constituents while simultaneously operating under hypersaline environments under the
solvent treatment pathway proposed.

What is critical the development of any treatment process, including that of
produced water, is the economic cost and ultimately the viability of treatments across a
multitude of conditions. Being able to satisfy both is arguably the biggest barrier to
adoption within the field. The growing demand for water coupled with the changes in
legislation regarding disposal suggest a prominent opportunity for novel recovery

technologies. Given the wide range of constituents that can be observed in produced
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water (Al-Ghouti et al., 2019; Camarillo et al., 2016; Maguire-Boyle & Barron, 2014),
continued need for reinjection, disposal, or reuse from operators, and current progress
in treating this water, this combined ferrate-directional solvent extraction process has
promising relevance in large-scale application in hydraulic fracturing wastewater
treatment area.
Goals and Objectives

By examining these objectives, we can demonstrate a treatment process that has
to potential to fill several voids in the understanding of different fields of water treatment.
First, we investigate if ferrate (V1) is an effective method of pretreatment for reduction of
turbidity of the produced water under hypersaline conditions. We also examine the
efficacy of ferrate (VI) in breaking stable suspensions that are common with produced
water. Next, we investigate if a directional solvent extraction (Boo et al., 2019; Choi et
al., 2021) can be performed on the ferrate (VI) - pretreated produced water, and if
experimental results correspond with prior experiments under hypersaline solutions for
producing a product effluent with a lower TDS. Finally, the study looks to establish
economic calculations in determining the role of this novel treatment process in the
industry by looking at a per-unit treatment cost compared to other currently used

processes.
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CHAPTER Il: REVIEW OF THE LITERATURE
STATUS OF CURRENT RESEARCH
Conventional and Unconventional Treatment of Produced Water

Current treatment of produced water can be categorized in a number of ways.
Aside from waste management schemes where the goal is primarily safe and long-term
disposal, blending of waste streams and adjustment of (initial) fracking fluids are also
ways that have been documented to reduce overall volumes of produced water, usually
with little-to-no reduction in efficacy (Arthur et al., 2011; Halliburton, 2013).

Further treatment of the produced water for recycling and reuse (termed
“polishing” by Jiménez et al.) has been well-documented by Fakhru’l-Razi et al. (2009)
and Jiménez et al. (2018). These authors have extensively described the various ways
produced water is current managed along with proposed treatment standards and reuse
opportunities through additional treatment. Both have identified that treatment is
dictated by a variety of factors including the volumetric flow of the waste, characteristics
of the waste, and prospective end-use. Summarized in Table 1, this summary includes
a proposed use or targeted pollutant, considerations regarding said process, an
efficiency for removal, and prospective cost ranges (where available, preferably within
industry). Given that this an aggregation of several sources, this represents a non-
exhaustive list of treatments or possible end-results and attempts to demonstrate the
variety of options available. A lack of cost for treatment either indicates technologies
that are not mature enough to see wide-spread implementation (e.g.: experimental,

bench, or pilot-scale) or a lack of response from operators. Puder & Veil (2006) noted



that some disposal and treatment facilities declined to offer specific costs (offering

ranges) or processes to protect competitiveness.

16
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Usage of Ferrate for Treatment of Wastewater

Currently, usage of ferrate occupies three distinct niches within wastewater
treatment. Much work has been performed to examine ferrate’s viability as additive for
coagulation and flocculation to reduce turbidity (not a complete list, but see: de Luca et
al., 1992; Graham et al., 2010; Jiang & Lloyd, 2002; Lv et al., 2018; Zheng & Deng,
2016), with varying results. This is currently theorized by Lv et al. to be the result of
three main factors: laboratory-scale implementation, implementation of a buffer solution
to mediate the pH of the reaction, and the inability to separate ferrate’s dual effects of
oxidation and coagulation (Lv et al., 2018). Widespread variation in dosage (Cui et al.,
2018; Mendonga et al., 2017), target contaminant (Jiang et al., 2018), and operational
application (Goodwill et al., 2016) appear to have profound affects for ferrate’s efficacy
for pretreatment.

Ferrate’s second and third application can be observed at both ends of a
wastewater treatment process when used as an oxidizer to reduce downstream turbidity
for filtration (Goodwill et al., 2016), for targeting recalcitrant compounds (Sharma, 2010,
2011, 2013), and for disinfection. Destruction of recalcitrant compounds may be
substances that are not susceptible to traditional processes within municipal wastewater
streams (e.g.: pharmaceuticals), or where conventional treatments (e.g.: ozone,
peroxide) have unwanted down-stream (e.g.: trihalomethane) or side-product formation.

Jiang et al. (2014)2 also demonstrated ferrate’s ability at low doses (1.5 mg/L) for

8 Jiang et al. also demonstrated in the same paper ferrate’s ability to remove a variety of endocrine
disruptors, personal care products, and heavy metals from solution, the last of which is of more concern
for this study as a direction for future work.
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disinfection of a variety of microorganisms. Ferrate’s biggest advantage over more
conventional treatments is the variety of roles it may be applied to, with the final end-
product being a stable ferric ion that precipitates readily out of solution (Han et al., 2019;
Lv et al., 2018), and is easily dealt with through conventional settling and clarification
operations while not being considered a toxic by-product.

To date, there is relatively little work with usage of ferrate in treating produced
water from hydraulic fracturing operations, although some exists. Wang et al. (2016)
looked at the usage of ferrate an advanced oxidation treatment to target polyaromatics,
one ring aromatics, and naphthenic acids from the production of oil sands wastewater.
Compared to other studies using ferrate for municipal waste streams, Wang et al.
(2016) reported effective dosages requiring between 1 — 400 mg/L as Fe, with a
moderate of oxidation occurring for high carbon-count compounds, suggesting that
oxidation rather coagulation is the main removal mechanism (Wang et al., 2016).
Mendonga et al. (2017) examined a highly concentrated sodium ferrate (V1) application
in under acidic conditions to treat produced water from oil-field operations in Brazil. At a
pH level of 3 and using a 2000 mg/L dosage of ferrate (VI), the final oil and grease
content of the water was able to be reduced by 94% to 4.7 mg/L after 24 hours.
Alternatively, Han et al. (2019) looked at using ferrate for demulsifying the stable oil-
water emulsions that are formed in produced water by targeting the thickeners that
increase the viscosity and chemical oxygen demand (COD) of the water. At a much
lower dose (5 mg/L) and at 45 C, ferrate was able to substantially reduce the COD
loading of the wastewater (~74% reduction) while reducing the suspended solids (~70%

reduction) and viscosity (removal efficiency of 91.8%). These three studies, along with
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the prior work in using ferrate (VI) as an unconventional waste stream treatment,
provides excellent justification in its usage for treating produced water from hydraulic
fracturing operations.
Direction Solvent Extraction for Desalination

Directional solvent extraction® (DSE) utilizes a low-grade heat, membrane-free
process that has promising results in disrupting the sea water desalination treatment
field. First identified by Davidson et al. (1960) and Hood & Davison (1960), a variety of
alcohol and amine solvents show selective solubility to water (rather than salts) that
could operate at lower operating temperatures than other convention desalination
treatment. More recently, the work in DSE has been focused on optimization of solvent
choice (Choi et al., 2019, 2021; Garciadiego et al., 2020), process design (Alotaibi et al.,
2017, 2019; Bajpayee, 2012), and the possible explanations behind the molecular
movement between solvent and water (Luo et al., 2011). Most of the prior work has
looked at sea water and brackish water for candidates for desalination, although
(Bajpayee, 2012; Boo et al., 2019, 2020) looked at the possibility of “hypersaline” brines
for further extraction of water and for zero-liquid discharge processes.

DSE can be compared to two predominate?, but different methods of
desalination currently used. Reverse osmosis (RO) utilizes a semi-permeable

membrane that selectively allows for rejection of feed water constituents. However,

9 Other names for the process include “temperature swing solvent extraction” and “ionic liquid extraction”
with the latter focused on a select solute extraction rather than water.

0 We acknowledge the presence of other technologies, but these two represent the mature majority of
the current methods of desalination. Other technologies are perceived to be unviable due to energy
requirements or operating parameters of brine concentration but show promising applications for
hybridization with existing technologies.
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significant mechanical force to overcome osmotic pressure across the membrane is
required, resulting in a limited range of concentrations of brines that can be treated.
Membrane fouling and replacement as well as pretreatment of feed water are also
operational concerns that need to be considered when using RO. Conversely, thermal-
based processes, such as Multi-Stage Flash (MSF) or Multi-Effect Distillation (MED)
require large physical footprints, high energy input, and high thermal output to condense
evaporated water from saline solutions, with a disproportionate thermal energy usage
required for viability. Final disposal of brine reject (or “raffinate”) for both thermal- and
RO-based operations is also of concern, as discharge of concentrated brine has
adverse ecological impacts on the environment (Bazargan, 2018; Bleninger et al.,
2010). DSE’s advantages over conventional treatments are thought to include no fouling
potential, lower energy usage/operating parameters, and wider tolerance to brine
concentrations and incoming feed water (Bajpayee, 2012; Garciadiego et al., 2020),

suggesting it is well suited as a candidate for hydraulic fracturing wastewater treatment.
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CHAPTER Ill: MATERIALS AND METHODS
FLOWCHART OF PROPOSED TERATMENT PATHWAY

We propose the following as a possible treatment pathway for an initial proof-of-
concept operation. We separate this treatment pathway into two distinct processes:
ferrate (V1) oxidation/ coagulation and directional solvent extraction. First, we presume
that the raw wastewater has been pretreated to remove the “free” oil content, leaving
suspended oil and particles, which is common for current treatment schemes.

Raw wastewater is then subjected to rapid mixing (600 RPM), where ferrate (V1)
is introduced after being rehydrated. After pretreatment with ferrate (VI), wastewater is
allowed to settle. Treated wastewater should then be quenched (such as through
sodium thiosulfate addition) to remove residual ferrate (VI) before introduction into the
directional solvent extraction process if needed. With no pH control and no buffer
solution used, ferrate (VI) should rapidly decompose to non-reactive species.
Suspended oils should now be a distinct layer and able to be removed with skimming,
while settled solids removed through coarse filtration or clarification.

For directional solvent extraction, treated wastewater (now nominally a brine
solution) would be introduced into the solvent into a sealed container (termed “cold”
treatment). Container would be vigorously agitated to promote water uptake. After an
appropriate measure of time, a change in the respective volumes of solvent and brine
will occur, with the brine appearing to reduce in volume while the solvent increases.
This would indicate that solvent hydration had occurred. Rich solvent mixture is then
removed from brine through pipetting. Brine not fully adsorbed into solvent (“raffinate”)

could be either retained for further solvent extraction until excess salt precipitated
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(under a zero-liquid discharge scheme proposed by Boo et al., 2020) or reintroduced
into the treatment stream. The rich solvent is then placed into a hot bath under sealed
conditions with adequate headspace for an appropriate amount of time. After heat
treatment, separation of solvent and water should be observed, with the solvent being
the top layer and water the bottom layer. Now a solution that exhibits a defined bi-layer,
mixture is separated through gravitational separation, with solvent being able to be

reused for repeated extraction once cooled.
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MATERIALS
Chemicals

Diisopropylamine (“solvent”, CAS#: 108-18-9, BeanTown Chemical) was used as
received. 4 M saline brines were prepared by dissolving table salt (“Quality Salt” HEB)
or sodium chloride (CAS# 7647-14-5,VWR Life Sciences) in deionized water (“DI”, 18.2
MQ) obtained from a Milli-Q ultrapure water purification system. Potassium ferrate was
prepared by Dr. Virender Sharma’s laboratory at Texas A&M University (College
Station) by the method of Thompson et al. (1951), and kept in sealed bottles under
desiccant until use. Oil Red O (CAS#: 1320-06-5, BeanTown Chemical) was dissolved
in DIPA to yield 0.12 w/w% solutions, and a few drops were added to the solvent for
visual distinction from the brine solution. Sodium thiosulfate pentahydrate (CAS#: 335-
95-5, Strem Chemicals) was dissolved into DI water to create a 100 mM solution and
maintained under refrigeration until use. Sodium bentonite clay (“Aquagel Gold Seal
Viscosifer”, Baroid) was used as received. NaOH (CAS#: 1310-73-2, VWR BDH
Chemicals) and H2SO4 (CAS#: 7664-93-9, JT Baker) were used to create 100 mM
solutions using DI water. Hexadecane (CAS#: 0000544-76-3, Acros Organics) was
used as received.
Instruments

A Thermo Scientific Orion Star A329 multimeter was used in conjunction with
Orion DuraProbe 4-Electrode Conductivity Cell probe and Orion ROSS Ultra Low
Maintenance pH/ATC Triode for salinity and pH/temperature measurements. Vernier
LabQuest 2 with ORP sensor was used for measuring ORP of samples. Hach’s DR1900

Portable Spectrophotometer was used to determine ferrate (VI) concentration through
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optical absorbance. An Ohaus precision balance (PX163) was used for all dry
measurements. VWR’s Signature Ergonomic High Performance Single-Channel
Variable Volume Pipettors were used for additions and removals of various liquids.
Oakton T100 turbidity meter was used for measuring turbidities and a Hamilton Beach
Commercial blender (soil attachment) was used for making emulsions.

METHODS

Preparation of synthetic produced water

Initial formulation (formula #1) of synthetic produced water (SPW) was prepared
by emulsifying 60 mg calcium bentonite clay into appropriately diluted 4 M NaCl stock
solutions to create 300 mL 1 M, 2 M, and 4 M brines. 35 pL of TruSyn 200i was added
after clay addition and continued to be emulsified using the Hamilton Beach blender to
ensure full incorporation.

For formula #2, sodium bentonite clay and hexadecane were added to 1 M, 2 M,
and 4 M brine solutions'" to create mixtures that would possess an initial turbidity of
approximately 50 NTU and an organic content equivalent to 100 mg/L. SPW was mixed
using the Hamilton Beach blender to create a stable suspension. Formula #3 followed
formula #2 but increased initial turbidity to approximately 100 NTU.

Ferrate stock solution was prepared by dissolving dry, premade potassium
ferrate into DI water or a buffer solution. Ferrate concentration was determined through
optical spectrometry at 510 nm after filtering through a 0.45 um filter following the Lee et

al. (2004) methodology and used immediately afterwards.

1 Brine stock solution was created using table salt rather than the reagent grade salt in formula #1
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Pretreatment of synthetic produced water

Five sets of trials were performed to develop the proposed treatment process.
Trial 1 was used to determine the adequate ferrate (VI) dosage under conditions that
had dissolved solids and oils, but no salt. This was necessary given the wide range of
opinions within the literature on appropriate ferrate (VI) dosage for inducing
simultaneous oxidation and flocculation. Trial 2 was a variation of trial 1 where a dosage
amount was hypothesized to be appropriate given varying levels of salt content. There
were some indications within the literature that suggested that dosage levels may be
affected by the dissolved ions present within brine solutions. Trial 3 was used to
determine the role of pH control with respect to ferrate (VI) under hypersaline conditions
after observations from trial 1 and 2. Larger volumes were used in trial 3, but still
followed the ratio of constituents observed in trials 1 and 2. Trial 4 re-assessed the
ferrate (V1) dosage using a different formulation for SPW and under modified operating
conditions following. Trial 5 capitalized on the findings from trial 4 for ferrate (VI) dosage
and pH control. For trials 4 and 5, a control was included to observe if suspensions
were maintained throughout mixing and settling periods. Negligible loss of turbidity was
observed in either trial, confirming that suspension of hydrocarbon and dust was stable.

Initial tests to determine appropriate ferrate dosage was performed under
triplicate replication, starting with a 0 M salt solution. 100 uM, 50 pM, and 25 uM
(equating to an approximate 12, 6, and 3 mg/L as Fe dosage, respectively) were
selected as candidates based on prior usage in the literature (Talaiekhozani et al.,
2017) and feasibility of preparation. Ferrate (VI) concentration was estimated at a 10

mg/L as Fe for Trial 2, and 12 mg/L as Fe for Trial 3.
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For trials 1 and 2, SPW solutions were placed onto a programable paddle stirrer
(Phipps and Bird, model 7790-400) and set to 200 RPM for rapid mixing for 60 seconds
prior to addition of ferrate solution, then continued to mix for another 60 seconds; pH
was monitored and allowed to rise. After rapid mixing, the paddle stirrer was set to 50
RPM for 45 minutes for slow mixing to enhance floc formation. SPW was quenched with
Na2S203 (100 mM) to halt ferrate (VI) residual reactions and allowed to continue mixing
for 30 minutes. Paddle blades were removed, and gravitational settling was allowed to
occur for 45 minutes, with sampling for turbidity taken as before at the conclusion of the
trial.

For trial 3, the setup of tests followed trial 2 arrangement, but pH was controlled
during ferrate (V1) incorporation through NaOH and H2SO4 addition to maintain 7.0 pH.
Samples of each treatment level were collected before and after introduction of ferrate
for assessing turbidity and salinity. Turbidity was assessed using a turbidity meter while
salinity was determined through measuring the conductivity of the water.

Trial 4 was conducted using formula #2 following further research and insight
provided by the previous trials. Notable deviations from previous trials included not
using a buffer solution and not employing any pH control. Prior research by Lv et al.
(2018) documented earlier research using ferrate (VI), noting that many used buffer
solutions and pH control to eliminate iron hydroxide formation, as the primary interest
was using ferrate (VI) as an oxidizer rather than a coagulation. Here, the interest was to
examine ferrate (VI)'s performance as a coagulation, so the change in pH was allowed
to occur unhindered. Ferrate (VI) doses were added under rapid mixing conditions (600

RPM) and allowed to continue for 180 seconds (Figure 2). Doses ranged from 1.0 to
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15.0 mg/L as Fe. SPW were transferred to the programmable paddle stirrer and set to
30 RPM for 30 minutes to allow for floc formation. After the slow mixing, samples were
allowed to gravity settle for one hour, after which samples were collected for turbidity.

Samples were collected by pipetting 3 cm under the waterline.

Figure 2: Rapid mixing of SPW

Trial 5 was conducted with formula #3. A 5 mg/L as Fe dosage was selected due
to the research done by Han et al. (2019). Ferrate doses were added under 600 RPM
mixing for three minutes, then transferred over to the paddle stirrer for 30 minutes
(Figure 3). Samples were allowed to gravity settle for one hour, after which turbidity was

recorded (Figure 4). Samples were collected by pipetting 3 cm under the waterline.
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Figure 3: Slow mixing of SPW to encourage flocculation.

Figure 4: Samples undergoing gravitational settling and continued stirring. From left to right, an approximate 10 min
difference between samples.

Directional solvent extraction of product water
For initial testing of solvent extraction (trials 1-3), sealed containers of solvent

were placed into a refrigerator and allowed to cool up to one hour before use. Solvent
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was doped with an Oil Red O dye to further differentiate solvent from SPW. Supernatant
from ferrate treated-SPW was collected through pipetting off liquid, filtering to remove
large solids, added to prechilled solvent, and agitated for 60 seconds. Containers were
placed back into refrigerator to cool for one hour, with re-agitation every 15 minutes.
After one hour, rich solvent mixture'? was decanted from raffinate by pipetting and
separatory funnel. Rich solvent was bottled, placed into water bath to heat for 1 hour at
70 C, and agitated every 15 minutes for 60 seconds. After heating cycle, water and lean
solvent layer separation was observed, with layers being removed through the usage of
separatory funnel decanting. Volumes of solvent and product water recovered were
measured, and aliquots for turbidity, and salinity of the product water were collected.
Samples were diluted to create a greater volume where needed and then back-
transformed.

Adjustments to extraction of product water through solvent extraction were also
made. Following new research in the field by Choi et al. (2021), the need for the
prolonged “cold” extraction period was reevaluated. While Boo et al. (2019) used a one
hour period that did not employ any agitation (therefore allowing adsorption through a
diffusion-like process), Choi et al. (2021) used a vigorous (i.e: via handshaking) mixing
for one minute at 25 C. A median option between the two was devised for trial 5; rapid
mixing by orbital shaker at 140 RPM for thirty minutes at room temperature (Figure 5).

This would differentiate from Boo et al. (2019) by being shorter in time, higher in initial

2 While not explicitly declared in works such as Boo et al. (2019) and Choi et al. (2021), full uptake of a
solute into a solvent can be described as being “rich”, while solute-poor solvents as “lean” following a
similar terminology for amine gas treatment or gas sweetening.
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temperature (20 vs 15 C), and including a physical motion, while being more

quantifiable than Choi et al. (2021).

Orbital Shaker

Figure 5: Modified orbital shaker

Similar to trial 4, after bilayer clearly formed a portion of the rich solvent layer
was removed through pipetting and placed into a sealed container (Figure 6). Different
from previously trials, pipetting allowed only a portion of the solvent to be removed while
preventing any inadvertent mixing of layers or cross-contamination that separatory
flasks would include at the lower temperature for previous trials. The rich solvent was

then placed into a hot bath for thirty minutes. Similar to Choi et al. (2021), the hot bath
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was set to a variety of temperatures to assess the solvent’s performance at each salt
concentration level. Temperatures of 60, 70, and 80 C were selected due to the boiling
point of the solvent used, and to compare against previous literature who only employed
one “high” temperature (Boo et al., 2019). After the heating phase, product water was
removed through a separation flask, measured for volume, and evaluated for salinity
(Figure 7). Removal through a separation flask was appropriate here as the solvent

would be less soluble in the product water at the higher temperatures
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Figure 6: SPW with DIPA. Bottom layer is SPW, with
top layer as DIPA.

Figure 7: Separation of lean solvent and product
water. Bottom layer is water, top layer is solvent.
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CHAPTER IV: RESULTS

PRETREATMENT OF SYNTHETIC PRODUCED WATER
Trials 1 through 3

Usage of ferrate (V1) to pretreat SPW through oxidation of organic compounds
and subsequently inducing coagulation and flocculation produced mixed results at a
variety of treatment levels. For initial dosage determination of ferrate (trial 1), 100 yM
resulted in an average 60% reduction in turbidity for supernatant collected, while the 50
MM and 25 uM treatment levels yielded an average increase of 90% and 53% in
turbidity. Under trial 2 where salt was present (83 uM ferrate dosage at all levels),
turbidity measurements post-ferrate treatment increased by an average of 83% for brine
treatment levels, while trial 3 (100 uM ferrate at all levels, pH controlled) turbidity was
reduced by 87% post-ferrate treatment (Table 4).
Trial 4

Utilizing no pH control and formula #2, ferrate (VI) doses had a wide range of
effects at the various salt concentration levels. For 1 M brines, a 1.5 mg/L as Fe dose
removed 93.0% of turbidity after treatment and settling. For 2 M brines, a dosage of 1 to
7 mg/L as Fe presented a removal ranging from 99.6 to 95.7% turbidity removal, with 10
mg/L as Fe removing 84.6% and 15 mg/L as Fe removing 93.2%. 4 M brines presented
a diminishing removal as doses increased, with 1 mg/L as Fe removing 96.0% of
turbidity, and 15 mg/L as Fe only removing 39.9% of turbidity (Table 5).
Trial 5

Utilizing no pH control and formula #3, the 5 mg/L as Fe dose was able to

remove an average of 96.52% of turbidity across all three salt concentrations, for an
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average turbidity of 3.27 NTU. For 1 M brines, an average final turbidity was 2.99 NTU,
equating to a removal efficiency of 96.83%. For 2 M brines, the average final turbidity
was 2.23 NTU, equating to 97.66% efficiency for removal. Finally, for 4 M brines, the
final turbidity was 4.60 NTU corresponding to a 95.07% removal efficiency (Table 6).
DIRECTIONAL SOLVENT EXTRACTION OF PRODUCED WATER

For trials 2 and 3, supernatant was collection for addition into solvent treatment.
For Trial 2, raffinate, and final product water volumes were recorded. 1 M solutions
recovered 55% of feed water (rejected 38%) by volume, 2 M recovered 23% (rejected
53%), and 4 M recovered 5% (rejected 73%). For Trial 3, salinity was compared against
initial conditions. 1 M solutions reduced salinity by 37%, 2 M reduced salinity by 65%,
and 4 M reduced salinity by 84% (Table 4). Solvent treatment reduced on average
turbidity by 87% for Trial 2 and 84% for trial 3 when compared to supernatant turbidity.

For trial 5, treated SPW supernatant was collected similar to trials 2 and 3. After
solvent extraction, product water was examined for volumes and salinity. For 1 M
brines, an average water extraction efficiency was calculated at 25.15%. For 2 M and
4M brines, average water extraction efficiency was 13.07% and 2.93%, respectively.
These efficiencies represent the average across the three AT that were examined, with
more granular breakdown provided in Table 7. Salt rejection was calculated similar to
turbidity, with the results aggregated in Table 8. Of note, average feed concentration
was observed to be reduced by 94.73% for 1 M brines, 97.40% for 2 M, and 98.94% for
4 M brines, equating to product waters that yielded averages of 3078 ppm, 3039 ppm,

and 2473 ppm, respective to brine concentrations (Table 8). .
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Average of Average of
Average of - Turbidity after o -, Turbidity after
Trial, Test Turbidit Fe(VI) (V1) Fe(VI) and Total TRE
(NTU)y treatment solvent treatment
(NTU) (NTU)
1, No Salt
3mg/ L Fe (VI) (n=3) 48 73.6 (-53%) - -
6mg/L Fe (VI) (n=3)  48.2 91.7 (-90%) - -
12 mg/ L Fe (V1) (n=3) 46.2 18.34 60% - -
2, Salt
1M,10 mg/ L F?n(l/sl)) 60.7 95 (-57%) 10 84%
2M,10 mg/ L F?n(;/;)) 56.3 118.6 (-111%) 13 77%
4M, 10 mg/ L F?n(llal*)) 58.4 106.8 (-83%) 18 69%
3, Salt - pH controlled
1M, 12 mg/ L F?n(;/g 81.7 7.9 90% 2.12 97%
2M, 12 mg/ L F?n(l/;3 126 14.9 88% 1.44 99%
4 M, 12 mg/ L F?n(;/;)) 146 24.5 83% 3.08 98%

Table 4. Initial and final conditions for SPW for salinity, Trial 3 only

Average of Initial Salinity

Average of Salinity

Trial, Test (mS/cm) after Fe(VI) and solvent SRE
treatment (mS/cm)
3, Salt - pH controlled
1M, 12 mg/ L Fe (VI) (n=3) 81.37 50.95 37%
2 M, 12 mg/ L Fe (VI) (n=3) 129.6 45.22 65%
4 M, 12 mg/ L Fe (VI) (n=3) 221.6 34.8 84%




Table 5: Trial 4 results, turbidity removal with varying ferrate (VI) doses and no pH control

Salt Initial Turbidity Final Turbidity

concentration 20S29¢ (mg/L as Fe) (NTU) (NTU) TRE
1M 15 216 151 93.0%
1M 35 27 13.49 50.0%
1M 7 27.6 22.4 18.8%
1M 10 43.4 13.11 69.8%
1M 14 31.9 23.1 27.6%
2M 1 432 0.16 99.6%
oM 25 46.5 0.84 98.2%
oM 5 48.7 143 97.1%
oM 7 515 223 95.7%
oM 10 42.4 6.55 84.6%
oM 15 50.7 3.44 93.2%
4M 1 48.8 1.95 96.0%
4M 25 51.9 6.06 88.3%
4M 5 48.3 7.95 83.5%
4M 7 49.3 11.11 77.5%
4M 10 55.7 14.4 74.1%
4M 15 49.6 29.8 39.9%

Table 6. Trial 5, Aggregated results for removal of turbidity by 5 mg/L ferrate (VI) dose.

iti idi Average of Final Turbidit
concS:tl:ation Average 0(fl\llE]I'IBe)lI Turbialy ° (NTU) ’ Average of TRE
1M (n=6) 94.32 2.99 96.83%
2 M (n=6) 94.75 2.23 97.66%
4 M (n=6) 93.73 4.60 95.07%

Average 94.27 3.27 96.52%
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Table 7: Trial 5, Average of water extraction efficiencies at various AT from 20 C

AT from 20 C Average of water extractions
Salt Concentrations 40C 50 C 60 C Vuater / Msoivent (ML/Q)
1M (n=6) 21.83% 25.23% 28.35% 25.14%
2 M (n=6) 10.80% 14.24% 14.16% 13.07%
4 M (n=6) 1.56% 2.95% 4.28% 2 93%

Table 8: Trial 5, Salt rejection and product water and feed concentrations

Concesn?rlgtions Ave_re_lge of initial Avgrgge of final Average o_f product Average of
AT from 20 C ’ Salinity (mS/cm) Salinity (mS/cm) concentration (ppm) SRE
;p%§”58’440 92.46 4.81 3078 94.73%
40 C 92.18 5.29 3388 94.20%
50 C 91.89 4.59 2938 94.97%
60 C 93.31 4.54 2908 95.02%
ip'\ri]§~116'880 181.71 4.75 3039 97.40%
40 C 182.03 5.40 3453 97.05%
50 C 182.18 412 2637 97.74%
60 C 180.93 4.73 3028 97.41%
3p“$§~233’760 365.48 3.86 2473 98.94%
40 C 365.20 4.92 3147 98.65%
50 C 365.56 3.49 2232 99.05%

60 C 365.69 3.19 2040 99.13%
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CHAPTER V: DISCUSSION
PRETREATMENT OF SYNTHETIC PRODUCED WATER
Preliminary examinations of ferrate (VI)

The aim of trial 1 was to determine the appropriate dosage of ferrate at a
controlled, initial turbidity. The 12 mg/L dosage was the only treatment level that
resulted in a lower turbidity, while the other dosage amount of 6 mg/L and 3 mg/L
increased overall turbidity at the conclusion of the trial. Determination of an appropriate
ferrate dosage appeared to conflict with the prior research across both treatment levels.
At one end of the spectrum, doses of up to 2000 mg/L'® have been reported in the
literature (de Luca et al., 1992; Mendonga et al., 2017; Wang et al., 2016), while others
have indicated a much more approachable dosages of <10 mg/L (Jiang & Lloyd, 2002).
This variability in dosage and efficacy for oxidation, coagulation, and flocculation is
theorized to be a function of initial turbidity, the dissolved ion concentration of the water,
pH control, and the organic loading of the incoming wastewater. In this study, the
incoming turbidity and dissolved ion concentration is considerably higher than most
municipal waste streams. The high dissolved ion concentration that is inherent to the
nature of this study is thought to rapidly accelerate the self-conversion of Fe (VI) to
colloidal iron oxide particles that do not participate in charge neutralization for
coagulation to occur (Jiang & Lloyd, 2002; Sharma et al., 2001). While some iron floc
has been observed in other studies (Goodwill et al., 2016), it appears that nanoscale

flocculation is occurring, but not true large-scale sweep flocculation that would result in

3 Albeit for oxidation and removal of oils and greases, rather than removal of non-hydrocarbon solids
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a decrease in turbidity. The variability experienced in these initial trials as wells as other
studies can be traced back to incoming characteristics of the water, but also retention
times for settling to occur. In trials 1 and 2, ferrate was quenched rather than allowing
for a natural degradation to occur while also having a shorter gravity-induced settling
period than other trials had used. The degree at which rapid and slow mixing is
performed to induce the initial oxidation of organic materials and to allow for floc
formation to occur is equally variable.

For trial 3, pH control was examined due to the sharp spike in pH after ferrate
(VI) was added into solution during trials 1 and 2. With acid addition, color of the
solution changed from characteristic purple of iron (VI) to the yellow-brown color of iron
(11/111), with floc formation occurring immediately. pH control through acid addition
seems to present appreciable results, with an obvious change in turbidity reduction
efficiency compared to the previous trials (Table 3). Further work needs to be
performed to determine if oxidation is truly occurring with the organic components of the
SPW at all dosage levels used within this study. Analysis at this current stage was not
able to be performed due to the initial high salinities and low organic loading that
prevented accurate COD or TOC (total organic carbon) results.
Further refinement of treatment pathway

Following the results and feedback received on trials 1-3 for experimental setup,
trial 4 was used to examine the removal efficiency of ferrate (VI) without buffer or pH
control. While some gains in TRE could be had with pH control, maintaining the pH at
an appropriate level proved difficult using acid addition. Examination of the Pourbaix

diagram of iron suggested an explanation of observed phenomena for earlier trials
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(Figure 8). When adding the acid or maintain the pH through a buffer, the ferrate (VI)
was shifted to aqueous Fe?*/ 3* or complexed (with the buffer) rather than the desired
iron hydroxide species precipitating out. Turbidity would then increase as colloidal iron
particles formed into solution, preventing coagulation from occurring. As noted by Lv et
al. (2018) and Zheng & Deng (2016), this would explain the earlier increases in turbidity
as buffers and pH control was employed. Trial 4 tested a higher turbidity SPW under no
pH control following a refinement for dosage mixing time and for floc formation. Ferrate
(VI) was allowed to readily decompose to lower valency species and then to ferric
hydroxide, while pH was monitored but not adjusted. After settling, every trial and salt
concentration level had profound reductions in turbidity compared to previous trials
(Table 5). The gradual decrease in efficacy in trial 4 for the 4 M concentrations can be
attributed by the interactions by the dissolved ions, similar to what other studies have

documented (Sharma et al., 2001; Talaiekhozani et al., 2017).



51

2.0-
1.6
1.2
0.8

> 0.4-

W 00-

0.4-
0.8~
4.2-
-1 _6 -

0
L

0 2 4 6 8 10 12 14
pH

Figure 8: Pourbaix diagram of 1 M solution of Fe, (reprinted from Graham et al. (2004) with permission from
Elsevier).

Trial 5 represented the culmination in refining the treatment procedure. Dosage
was selected based on studies from Han et al. (2019) and Zheng & Deng (2016) who
both used a 5 mg/L as Fe for treatment. While initial turbidities were increased
compared to trial 4, the effectiveness for turbidity removal was not diminished (Table 6).
Removal of turbidity to an average of 3.27 NTU presents an excellent opportunity for
this treated water to be used for other purposes, although further work needs to be
performed in examining the minimum dosage and reactant pathway needed for

oxidation for more recalcitrant compounds present within produced water.
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Statistical analysis of results for ferrate (VI) treatment

In order to determine if the initial salinity had an effect on the removal efficacy of
the ferrate (VI), nonparametric analysis was used to analyze the final turbidities
between each salt concentration level. An initial testing of assumptions from Levene’s
test for equality of variances indicated that the assumption of homogeneity of variance
was violated (F = 11.289, p = 8.726 e-05), so nonparametric analysis was used.

Kruskal-Wallis rank sum test was used to determine if there were significant
differences in final turbidities between salt concentration levels. Final turbidity was
statistically affected by initial salt concentrations, H (2), p (1.283e-09) (Figure 10).
Pairwise comparisons using Wilcoxon rank sum test (Holm correction) for post-hoc
testing further indicated that all three salt concentrations were distinct from each other

(Table 9).
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Figure 10: Kruskal- Wallis rank sum test for final turbidities

Table 9: Pairwise comparison Wilcoxon rank sum test
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Pairwise comparisons using Wilcoxon rank sum test, Holm correction

™ 2M

2M 1.967e-05 NA

4M 1.051e-05 8.902e-07
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SOLVENT EXTRACTION OF PRODUCED WATER
Preliminary solvent extraction of treated produced water

For trial 2, despite an increase in turbidity after ferrate treatment, solvent
extraction was able to reduce turbidity by 77% when compared to initial turbidity. As
noted before, if the comparison was made to the supernatant collected, solvent
extraction would show a reduction efficiency of 87%. Trial 3 show an average reduction
of 95% of turbidity following solvent extraction when compared to initial turbidity, and
reduced salinity by an average of 62% percent, although a wide variation in reduction
rates was observed. Turbidity and Salinity reduction was evaluated as an efficiency
formula where Ct is the reading after treatment, and Ci is the initial reading before

treatment:
- . : Cr
Turbitidy/Salinity Reduction, TRE/SRE = 1 — ( C-)
l

Solvent extraction for salinity reduction appears to be in agreement with
published literature, although further work needs to be performed in examining if
residual solvent present in solution would increase the apparent salinity. Turbidity
reduction efficiency of the solvent is unsurprising given the solvent’s preference for
water; residual iron hydroxide, and colloidal clay particles were concentrated into the
raffinate. Similar to the salinity, residual solvent may be to blame for what turbidity was
reported but given that values were under 4 NTU with minimum values under 1.5 NTU,
we feel that solvent extraction may present a potentially novel method of treating highly
turbid waters.

The efficiency of the solvent to final water produced (at each treatment level) was

expressed as a ratio of water volume (milliliters) to solvent mass (grams):



56

Solvent Ef ficiency, SE = Vwater/

solvent

Comparisons of raffinate volumes with final product waters indicates that a
sizable portion of water remains in solution to solvent (at 1 M 8% unrecovered, ~24% for
2 M and 4 M), although this could be attributed to method of heating the solvent-water
mixture. More elaborate setups such as using a simple distillation would eliminate this
discrepancy but would increase treatment cost.

Further refinement of solvent process

As noted in the methodology section, progress in examining the molecular
movement of solutes and salts (Choi et al., 2019, 2021) provided possible explanations
to experimental results and improvements to future studies. Here, in the trial 5 a shorter
hydration time between solvent and brine was employed while under mixing conditions
following the insight provided by the continuous flow process employed by Choi et al.
(2021). While this study did not employ a mixing condition to the degree that Choi et al.
(2021) did (140 RPM orbital shaker vs 600/700/800 RPM impeller with unknown
retention time to solvent-water extraction), the improvement in water recoveries from
previous trials for both volume and final salinity cannot be understated. Rejections of
94.73% to 98.94% of feed salt concentrations within one hour at a temperature shift of
40 - 60 °C highlights the ability for directional solvent extraction to produce near-
consumable water (Error! Reference source not found., Figure 12). While the results
of this study do not entirely align with either Boo et al., (2019) or Choi et al. (2021) for
recovery volumes or final salinities, it should be noted that at this current point further
optimization of solvent hydration conditions and solvent choice seems to be the likeliest

path forward for better results. A final product water of roughly 3000 ppm could be



further extracted with a solvent exchange, passed through to more well-established

desalination (such as reverse osmosis), or through consumer filtration systems.
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Statistical analysis of results for DSE treatment

Analysis of the efficiency of the DSE treatment by salt concentration level and
delta temperature (the difference from the low to high temperatures used) was
performed through linear regression. An initial test for homogeneity of variance using
Levene’s test with an interaction of salt concentration and delta temperature showed
that all levels of salt concentration were homogenous for variance:
F (1.9941), p (0.06904). Normality was assessed using Shapiro-Wilk’s normality test:
W (0.84417), p (5.481e-06). Two-way ANOVA was carried out on the recovery rates by
salt concentration and delta temperature. There was a statistically significant interaction
between the effects of salt concentration and delta temperature on recovery rates:
F (8,45) = 563.91, p (< 2.2e-16) (Error! Reference source not found.). Within group
ANOVA comparison is indicated on Figure 12, with significance levels noted as well.
Post-hoc testing using Tukey multiple pairwise-comparisons indicated that all three salt
concentration levels were distinct from each other (p < 0.05), but there was some within-

group interaction for the delta temperature for recovery rates.
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Economic cost analysis

In order for this treatment regime to be considered beyond the experimental
phase, a projected cost per treatment volume should be examined. As this treatment
regime is functionally two distinct processes, a cost for pretreatment and then for
solvent extract can be calculated using a variety of industry, commercial, and
experimental values. Obviously, short of a pilot scale implementation, these costs
merely provide a preliminary benchmark against the conventional technologies listed in
Table 1 and Table 2.
Ferrate (Vl) proposed costs

Ferrate (VI) treatment cost can be distinguished by two main factors: synthesis
and dosage. As noted by Talaiekhozani et al. (2017), production of a pure product is
highly dependent on the reagents and synthesis pathway. The “wet oxidation” method
produced relatively high purity (96%) at a low cost but is highly unstable and must be
used immediately. Other electrochemical reactors have been considered, with low
proposed costs ($0.02/g : Quino-Favero et al., 2018), although the scalability’* of such
efforts is unexamined. Currently, the best case for treatment cost comes from a
presentation given by T.D Waite of Ferrate Solutions, Inc (Ferrate Solutions, 2021, and
personal communications). He indicates that the proposed treatment cost is estimated

at $0.07/ mg/L. We feel this is the best-case scenario for large-scale implementation of

4 While difficult to verify, there was a press release (2008) indicating that the synthesis company Battelle
in conjunction with a start up was able to reduce the price down to $2.00 per gram (or $0.002 per mg)
using a proprietary electrochemical reactor at high purity and volumes, but no further record of the
product is able to be found for commercial implementation. Jiang et al. (2018) documents a pilot and full-
scale implementation for a municipal wastewater treatment process, but no breakdown on cost is
explicitly declared.



64

ferrate (VI) for immediate usage and use it as our cost for this treatment process.
Should cheaper synthesis pathways become more available, this would drastically
reduce the cost per treatment.
Directional solvent extraction costs

Directional solvent extraction’s proposed costs are easier to project due to
underlying operating conditions compared to ferrate (VI) dosage. DSE takes advantage
of a low heat gradient and a solvent that has a temperature- dependent solubility. Cost
per treatment is a calculation of the specific heat capacity of the solvent and the water.
Boo et al. (2019) calculated the energy needed to create 1 m?® from a 1.5 M brine'® with
a 50% recovery using DIPA (with heat recoveries of 80 and 90%) to be 77 - 39 kWh/ m?
(respectively). Choi et al. (2021) using a similar solvent (DPA) was able to bring the cost
to 5 — 6.9 kWh/ m3 (95% heat recovery) for a saline solution through simulation.

If we use an additive specific heat capacity calculation for using DIPA to create 1
m?3 from the various salt concentrations, we can estimate the cost to range from 259.2
kWh/ m3—3011.62 kWh/ m3, with no heat recovery. With heat recoveries ranging 80 -
95%, the energy cost can be brought down to 15.77 — 602.32 kWh/ m3. We attribute this
range to two factors: the amount of solvent needed to extract an amount of water at a
given salt concentration; as salinity increases, the amount of solvent needed’® increase.
Secondly, as salinity of the feed increases, DIPA seems to benefit from larger

temperature swings. Despite that, even as efficiency may increase with the increase in

5 Repeated extraction on the 1.5 M brine until 50% recover of water was achieved.
6 Not calculated here, but this calculation presumes a single work-cycle rather than reconcentrating the
raffinate to further extract water out of it.
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AT, the corresponding energy costs potentially outweigh the marginal volume produced.
If DSE is to be viable, a solvent with a lower specific heat capacity must be used or
significant heat recovery operations employed.

Total proposed treatment cost and comparison to other treatments

Using assumption laid out in the two previous sections, a total cost per treatment
volume can be assessed. A dosage of 5 mg/L as Fe for ferrate (VI) at the Ferrate
Solutions, Inc. synthesis cost was selected, and the cost for electricity for the directional
solvent extraction was assessed at $0.09. The total cost with a variety of heat
recoveries against the aggregation of other treatment technologies (from Table 2) are
summarized in Table 10.

Costs are highly dependent on cost of ferrate (VI) synthesis, ferrate (VI) dosage,
salt concentration of solution, employment of heat recovery processes, and at which AT
C for DSE extraction occurs. 1 M brines follow seem to be less sensitive to increases in
AT, while 2 M and 4 M brines benefit from increasing AT as salinity increases; lowest
costs were achieved at AT of 50 and 60, respectively (Error! Reference source not
found.). This is theorized to be a result of the propensity of the solvent to retain water
even after a dehydration cycle. These values also align with calculations performed by
Boo et al. (2019) when accounting for differences in water extraction efficiencies .
Error! Reference source not found. and Figure 16 show the massive difference in
energy to produce 1 m? of water, with the respective mass amounts of solvent needed,
determined through interpolation for a single-pass operation. Beyond this initial scale, a
continuous process could be used where the solvent is successfully regenerated (as

proposed in Figure 1).
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Table 10: Projected treatment cost per unit volume

68

Management option Min Cost Max Cost

9 ($/bbl) ($/bbl)
Disposal 0.30 22.00
Reuse or recycle 0.05 26.25
Chemical treatment 0.02 2.30
Membrane treatment 2.50 3.50
Thermal technologies 0.10 105.00
Biological treatment 0.01 2.00

AT40C AT50C AT60C

Fe (VI) [5 mg/L] + DSE, 1 M, 80% HR 0.84
Fe (VI) [5 mg/L] + DSE, 1 M, 90% HR 0.43
Fe (VI) [5 mg/L] + DSE, 1 M, 95% HR 0.22
Fe (VI) [5 mg/L] + DSE, 2 M, 80% HR 1.38
Fe (VI) [5 mg/L] + DSE, 2 M, 90% HR 0.70
Fe (VI) [5 mg/L] + DSE, 2 M, 95% HR 0.36
Fe (VI) [5 mg/L] + DSE, 4 M, 80% HR 5.80
Fe (VI) [5 mg/L] + DSE, 4 M, 90% HR 2.91
Fe (VI) [5 mg/L] + DSE, 4 M, 95% HR 1.46
Fe (VI) [5 mg/L] + DSE, 1 M, No HR
Fe (VI) [5 mg/L] + DSE, 2 M, No HR 6.83

Fe (V1) [5 mg/L] + DSE, 4 M, No HR

As noted in Table 2 and Table 10, the costs for treatment, including this

proposed process, range quite extensively. To be better visualize the possible niche

where ferrate (VI) and DSE compete with, a plot of possible values was created using

sources from the literature (Figure 17). Currently, DSE occupies in many of the same

ranges of TDS that other technologies do, but some notable advantage can be had with
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better solvent selection and process design. Some of these competing technologies are
well established but cannot tolerate the higher salinities or various other constituents
that produced water comes with. Other technologies may be relegated to a zero-liquid
discharge role and may come with exorbitant energy costs. Finally, some technologies

like DSE may still be in the conceptual role, and not quite ready for implementation.
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LIMITATIONS OF STUDY

Composition of SPW were limited to a number of constituents for a variety of
reasons. As noted before, it is impossible to test the full range of probable compositions
that produced water could contain. Therefore, study was limited to a reasonable range
of values that would presumably be encountered based on published literature.
Order of treatment processes

It is currently theorized that the order of the current treatment regime (i.e.: ferrate
(VI) then solvent) is the only route that mitigates the constituents of concern. Of greatest
importance, the (chosen) oil phase is soluble in the solvent and it is currently unknown
how it affects the solvent’s performance for water extraction in the long-term. The oil
phase could feasibly be removed from the solvent using a (later) fractional distillation
separation, but it remains equally unexplored in this particular context. Usage of the
solvent first would also presumably help in reducing the overall salinity and organic
loading of the water to be treated by ferrate, but there are other concerns. The solvent is
more susceptible to reduction/ oxidation reactions from the ferrate (VI) rather than the
oil phase and would form a variety of compounds if the ferrate (VI) were not fully
neutralized. This reaction would not only form potentially toxic water-soluble compounds
but would also reduce the available volume of solvent for water extraction on the next
cooling-heating cycle, which would defeat the initial premise of the directional solvent
extraction process.
Ferrate dosage

The currently used methodology of measuring the concentration of the ferrate

solution has several issues to overcome. When dissolving the dry ferrate salts into
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water, incomplete dissolution is a common outcome. Common techniques for improving
saturation of a solution such as more vigorous stirring, raising the solute temperature,
increasing volume of solute all work against the preparation of the ferrate stock solution.
When more vigorous stirring occurs, the ferrate will start to prematurely decompose to
iron hydroxide, probably due to introduction of atmospheric oxygen being incorporated
and reacted with. Raising the temperature of the solute will also initiate premature
decomposition, while adding more solute merely lowers the concentration of the
dosage.

With respects to the dosage to be added into the SPW, it is important to consider
the underlying parameters for application. Within this study, it was not investigated to
determine the upper range of concentrations that can be dissolved into solution from a
dried ferrate (V1) preparation. As with the determination of initial concentration of the
stock solution, other methods of preparation of the ferrate salts (Ciampi & Daly, 2009)
may similarly yield better results for purity and volumes.

Next, as this study is functionally a small volume, batch reactor and not
continuous flow implementation, the volume of ferrate relative to the volume of solute
(and perhaps the buffer concentration) needs to be considered. With the relatively small
volumes (e.g.: 300 mL) for the SPW in conjunction with (potentially) higher
concentrations of ferrate, the volumetric amount of the dissolved ferrate dosage will
have a profound impact on the initial salinity and turbidity. More simply, the SPW would
be watered down. This additional volume of solute (nominally water) would need to be
accounted for as it would influence the second half of the treatment process. Work by

Boo et al. (2019) has suggested that the solvent has higher recovery volumes of water
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at lower salinities but in this case may require a greater volume of solvent to be needed
(as the presumption is that equal molar proportions are used between brine and
solvent). As an example, in an early set of the trials a 300 mL SPW brine was used. In
order to deliver a 12 mg/L as Fe dose, 100 mL of concentrated ferrate stock solution
would need to be added to correctly dilute down the ferrate. This would effectively
reduce the initial salinities from 1 M, 2 M, and 4 M to 0.75 M, 1.5 M, and 3 M brines.
This additional volume of water has profound impacts on the efficacies for usage of
ferrate for oxidation and coagulation, but also the performance of the solvent. Both are
affected by the initial salinity and turbidity present, and it is difficult to truly separate out
the effects of a (relatively) large addition of solute volume when total volumes are low.
While not used here, we would propose that ferrate (V1) is either synthesized on-site
using the preferred wet oxidation methodology, and concentrations determined by
ABTS absorbance suggested by Lee et al. (2004).
Solvent and constituent interactions

At this time, it is not fully understood the interactions between some of the
constituents and the solvents, and the long-term effects on the performance of the
solvent. Of primary concern, the oil phase’s preference to being adsorbed into the
solvent (rather than the water) proves to be both an experimental and operational
concern. If the ferrate pretreatment does not fully remove the oil phase from the water
(both surface oil as well as suspended microparticles), the solvent will adsorb the oil
and retain it. To fully separate out such a mixture, a fractional distillation removal may
be needed. No interaction is expected between the solids (e.g.: clay, sand) phase of the

SPW and solvent.
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CHAPTER VI: CONCLUSIONS

Assessment of ferrate (V) efficacy

Ferrate (VI)'s usage in this waste stream appears to be justified given the removal
efficiency and low treatment cost per volume. The by-product produced is easily
removed through conventional filtration and does not affect subsequent processes.
Additionally, when properly applied the ferrate (VI) breaks suspensions that would
potentially affect the DSE portion of treatment. Ferrate (V1) application in this limited set
of trials demonstrated high removals of turbidity at affordable doses.
Assessment of DSE using DIPA

DIPA presents a good candidate for DSE for hypersaline solutions, and results align
with relevant research within the DSE field for desalination. Of note, under improved
and differentiated operating conditions DIPA showed improved salt rejection rates and
higher water recovery rates. DSE has the potential to fill a treatment void where in
addition to water recovery from produced water, conventional treatments for
desalination, zero liquid discharge, and environmental remediation are not entirely
viable due to energetic costs.
Economic justification of combined treatment process

This combined treatment pathway shows promise in being a viable treatment

technology. When compared to other treatment technologies, the cost per treatment
volume does appear to compete against (and displace) established processes. In some
cases, the treatment cost is not entirely competitive, but we feel that as the perception

towards water usage and waste stream production management within this industry
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shifts, this has strong potential to be a flexible option given the relative simplicity. We
acknowledge that not all aspects of the combined process have been fully examined,
namely the full influence of ferrate (VI) dosage on constituents or energetic costs for
DSE, but this study presents a preliminary examination for future work.
Recommendations for future work

For future research, more examination is needed in both treatment processes.
While well-established within the literature for municipal and emerging contaminants,
there is little work in assessing ferrate (VI)’s ability to oxidize under the highly saline
conditions or target the extensive list of contaminants that produced water contains. Of
interest, reduction in the radionuclides, heavy metals, and non-alkane hydrocarbons are
suitable targets for ferrate (VI), especially when considering dosage. Additionally, the
interaction between ferrate (V1) and solvent needs to be addressed to optimize
treatment pathways; ferrate (V1) may present as an ideal candidate to remove residual
solvent present with product water, if end-products are safe for consumption. While the
cost of ferrate (VI) remains a high barrier to adoption, further work justifying ferrate
(VI)'s usage will incentive researchers in developing novel solutions for synthesis and
delivery.

Solvent choice and treatment parameters also seem like likely targets for
optimization given the disparate influence they have on cost per treatment. As noted,
many groups are working on selection of a solvent that produces water at high volumes
with low salinity and at a low energetic cost. Amine- based solvents seem to be able to
support this, but further work into the molecular movement of salts and solutes into the

solvent layer present equally interesting questions to be answered. Further research is
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also needed as to the determination of movement of hydrocarbons into the solvent layer

and how that affects long-term efficacy.
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